Spectral Units in ADQL

Decorative Formulae
In case you find the piece of Python given below too hard to read: It’s just this table of conversion expressions between the different SI units we are dealing with here.

Astronomers these days work all along the electromagnetic spectrum (and beyond, of course). Depending on where they observe, they will have very different instrumentation, and hence some see their messengers very naturally as waves, others quite as naturally as particles, others just as electrons flowing out of a CCD that is sitting behind a filter.

In consequence, when people say where in the spectrum they are, they use very different notions. A radio astronomer will say “I’m observing at 21 cm” or “at 50 GHz“. There’s an entire field named after a wavelength, “submillimeter“, and blueward of that people give their bands in micrometers. Optical astronomers can’t be cured of their Ångström habit. Going still more high-energy, after an island of nanometers in the UV you end up in the realm of keV in X-ray, and then MeV, GeV, TeV and even EeV.

However, there is just one VO (or at least that’s where we want to go). Historically, the VO has had a slant towards optical astronomy, which gives us the legacy of having wavelengths in far too many places, including Obscore. Retrospectively, this was an unfortunate choice not only because it makes us look optical bigots, but in particular because in contrast to energy and, by ν = E/h, frequency, messenger wavelength depends on the medium you work in, and I shudder to think how many wavelengths in my data center actually are air wavelengths rather than vacuum wavelengths. Also, as you go beyond photons, energy really is the only thing that reasonably characterises all messengers alike (well, even that still isn’t quite settled for gravitational waves as long as we’re not done with a quantum theory of gravitation).

Well – the wavelength milk is spilled. Still, the VO has been boldly expanding its reach beyond the optical and infrared windows (recently, with neutrinos and gravitational waves, not to mention EPN-TAP’s in-situ measurements in the solar system, even beyond the electromagnetic spectrum). Which means we will have to accomodate the various customs regarding spectral units described above. Where there are “thick” user interfaces, these can care about that. For instance, my datalink XSLT and javascript lets people constrain spectral cutouts (along BAND) in a variety of units (Example).

But what if the UI is as shallow as it is in ADQL, where you deal with whatever is in the underlying database tables? This has come up again at last week’s EuroVO Technology Forum in virtual Strasbourg in the context of making Obscore more attractive to radio astronomers. And thus I’ve sat down and taught DaCHS a new user defined function to address just that.

Up front: When you read this in 2022 or beyond and everything has panned out, the function might be called ivo_specconv already, and perhaps the arguments have changed slightly. I hope I’ll remember to update this post accordingly. If not, please poke me to do so.

The function I’m proposing is, mainly, gavo_specconv(expr, target_unit). All it does is convert the SQL expression expr to the (spectral) target_unit if it knows how to do that (i.e., if the expression’s unit and the target unit are spectral units properly written in VOUnit) and raise an error otherwise.

So, you can now post

SELECT TOP 5 gavo_specconv(em_min, 'GHz') AS nu
FROM ivoa.obscore
WHERE gavo_specconv((em_min+em_max)/2, 'GHz')
    BETWEEN 1 AND 2
  AND obs_collection='VLBA LH sources'

to the TAP service at http://dc.g-vo.org/tap. You will get your result in GHz, and you write your constraint in GHz, too. Oh, and see below on the ugly constraint on obs_collection.

Similarly, an X-ray astronomer would say, perhaps,

SELECT TOP 5 access_url, gavo_specconv(em_min, 'keV') AS energy
FROM ivoa.obscore
WHERE gavo_specconv((em_min+em_max)/2, 'keV')
  BETWEEN 0.5 AND 2
  AND obs_collection='RASS'

This works because the ADQL translator can figure out the unit of its first argument. But, perhaps regrettably, ADQL has no notion of literals with units, and so there is no way to meaningfully say the equivalent of gavo_specconv(656, 'Hz') to get Hα in Hz, and you will receive a (hopefully helpful) error message if you try that.

However, this functionality is highly desirable not the least because the queries above are fairly inefficient. That’s why I added the funny constraints on the collection: without them, the queries will take perhaps half a minute and thus require async operation on my box.

The (fundamental) reason for that is that postgres is not smart enough to work out it could be using an index on em_min and em_max if it sees something like nu between 3e8/em_min and 3e7/em_max by re-writing the constraint into 3e8/nu between em_min and em_max (and think really hard about whether this is equivalent in the presence of NULLs). To be sure, I will not teach that to my translation layer either. Not using indexes, however, is a recipe for slow queries when the obscore table you query has about 85 million rows (hi there in 2050: yes, that was a sizable table in our day).

To let users fix what’s too hard for postgres (or, for that matter, the translation engine when it cannot figure out units), there is a second form of gavo_specconv that takes a third argument: gavo_specconv(expr, unit_of_expr, target_unit). With that, you can write queries like:

SELECT TOP 5 gavo_specconv(em_min, 'Angstrom') AS nu
FROM ivoa.obscore
WHERE gavo_specconv(5000, 'Angstrom', 'm')
  BETWEEN em_min AND em_max

and hope the planner will use indexes. Full disclosure: Right now, I don’t have indexes on the spectral limits of all tables contributing to my obscore table, so this particular query only looks fast because it’s easy to find five datasets covering 500 nm – but that’s an oversight I’ll fix soon.

Of course, to make this functionality useful in practice, it needs to be available on all obscore services (say) – only then can people run all-VO obscore searches without the optical bias. The next step (before Bambi-eyeing the TAP implementors) therefore would be to get it into the catalogue of ADQL user defined functions.

For this, one would need to specify a bit more carefully what units must minimally be supported. In DaCHS, I have built this on a full implementation of VOUnits, which means you can query using attoparsecs of wavelength and get your result in dekaerg (which is a microjoule: 1 daerg = 1 uJ in VOUnits – don’t you just love this?):

SELECT gavo_specconv(
  (spectral_start+spectral_end)/2, 'daerg') 
  AS energy
FROM rr.stc_spectral
WHERE gavo_specconv(0.0002, 'apc', 'J')
  BETWEEN spectral_start AND spectral_end

(stop computing: an attoparsec is about 3 cm). This, incidentally, queries the draft RegTAP extension for the VODataService 1.2 coverage in space, time, and spectrum, which is another reason I’m proposing this function: I’m not quite sure how well my rationale that using Joules of energy is equally inconvenient for all communities will be generally received. The real rationale – that Joule is the SI unit for energy – I don’t dare bring forward in the first place.

Playing with wavelengths in AU (you can do that, too; note, though, that VOUnit forbids prefixes on AU, so don’t even try mAU) is perhaps entertaining in a slightly twisted way, but admittedly poses a bit of a challenge in implementation when one does not have full VOUnits available. I’m currently thinking that m, nm, Angstrom, MHz, GHz, keV and MeV (ach! No Joule! But no erg, either!) plus whatever spectral units are in use in the local tables would about cover our use cases. But I’d be curious what other people think.

Since I found the implementation of this a bit more challenging than I had at first expected, let me say a few words on how the underlying code works; I guess you can stop reading here unless you are planning to implement something like this.

The fundamental trouble is that spectral conversions are non-linear. That means that what I do for ADQL’s IN_UNIT – just compute a conversion factor and then multiply that to whatever expression is in its first argument – will not work. Instead, one has to write a new expression. And building these expressions becomes involved because there are thousands of possible combinations of input and output units.

What I ended up doing is adopting standard (i.e., SI) units for energy (J), wavelength (m), and frequency (Hz) as common bases, and then first convert the source and target units to the applicable standard unit. This entails trying to convert each input unit to each standard unit until a conversion actually works, which in DaCHS’ Python looks like this:

def toStdUnit(fromUnit):
    for stdUnit in ["J", "Hz", "m"]:
        try:
             factor = base.computeConversionFactor(
                 fromUnit, stdUnit)
        except base.IncompatibleUnits:
            continue
        return stdUnit, factor
    
    raise common.UfuncError(
        f"specconv: {fromUnit} is not a spectral unit understood here")

The VOUnits code is hidden away in base.computeConversionFactor, which raises an IncompatibleUnits when a conversion is impossible; hence, in the end, as a by-product this function also determines what kind of spectral value (energy, frequency, or wavelength) I am dealing with.

That accomplished, all I need to do is look up the conversions between the basic units, which can be done in a single dictionary mapping pairs of standard units to the conversion expression templates. I have not tried to make these templates particularly pretty, but if you squint, you can still, I hope, figure out this is actually what the opening image shows:

SPEC_CONVERSION = {
    ("J", "m"): "h*c/(({expr})*{f})",
    ("J", "Hz"): "({expr})*{f}/h",
    ("J", "J"): "({expr})*{f}",
    ("Hz", "m"): "c/({expr})/{f}",
    ("Hz", "Hz"): "{f}*({expr})",
    ("Hz", "J"): "h*{f}*({expr})",
    ("m", "m"): "{f}*({expr})",
    ("m", "Hz"): "c/({expr})/{f}",
    ("m", "J"): "h*c/({expr})/{f}",}

expr is (conceptually) replaced by the first argument of the UDF, and f is the conversion factor between the input unit and the unit expr is in. Note that thankfully, not additive operators are involved and thus all this is numerically well-conditioned. Hence, I can afford not attempting to simplify any of the expressions involved.

The rest is essentially book-keeping, where I’m using the ADQL parser to turn the expression into a tree fragment and then fiddling in the tree fragment for expr into that. The result then replaces the UDF function call in the syntax tree. You can review all this in context in DaCHS’ ufunctions.py, starting at the definition of toStdUnit.

Sure: this is no Turing award material. But perhaps these notes are useful when people want to put this kind of thing into their ADQL engines. Which I’d consider a Really Good Thing™.

Tangible Astronomy and Movies with TOPCAT

This March, I’ve put up two new VO resources (that’s jargon for “table or service or whatever”) that, I think, fit quite well what I like to call tangible astronomy: things you can readily relate to what you see when you step out at night. And, since I’m a professing astronomy nerd, that’s always nicely gratifying.

The two resources are the Constellations as Polygons and the Gaia eDR3 catalogue of nearby stars (GCNS).

Constellations

On the constellations, you might rightfully say that’s really far from science. But then they do help getting an idea where something is, and when and from where you might see something. I’ve hence wanted for a long time to re-publish the Davenhall Constellation Boundary Data as proper, ADQL-queriable polygons, and figuring out where the loneliest star in the sky (and Voyager 1) were finally made me do it.

GCNS density around taurus.
Taurus in the GCNS density plot: with constellations!

So, since early March there’s the cstl.geo table on the TAP service at https://dc.g-vo.org/tap with the constallation polygons in its p column. Which, for starters, means it’s trivial to overplot constallation boundaries in your favourite VO clients now, as in the plot above. To make it, I’ve just done a boring SELECT * FROM cstl.geo, did the background (a plain HEALPix density plot of GCNS) and, clicked Layers → Add Area Control and selected the cstl.geo table.

If you want to identify constellations by clicking, while in the area control, choose “add central” from the Forms menu in the Form tab; that’s what I did in the figure above to ensure that what we’re looking at here is the Hyades and hence Taurus. Admittedly: these “centres“ are – as in the catalogue – just the means of the vertices rather than the centres of mass of the polygon (which are hard to compute). Oh, and: there is also the AreaLabel in the Forms menu, for when you need the identification more than the table highlighting (be sure to use a center anchor here).

Note that TOPCAT’s polygon plot at this point is not really geared towards large polygons (which the constellations are) right now. At the time of writing, the documentation has: “Areas specified in this way are generally intended for displaying relatively small shapes such as instrument footprints. Larger areas may also be specified, but there may be issues with use.” That you’ll see at the edges of the sky plots – but keeping that in mind I’d say this is a fun and potentially very useful feature.

What’s a bit worse: You cannot turn the constellation polygons into MOCs yet, because the MOC library currently running within our database will not touch non-convex polygons. We’re working on getting that fixed.

Nearby Stars

Similarly tangible in my book is the GCNS: nearby stars I always find romantic.

Let’s look at the 100 nearest stars, and let’s add spectral types from Henry Draper (cf. my post on Annie Cannon’s catalogue) as well as the constellation name:

WITH nearest AS (
SELECT TOP 100 
  a.source_id, 
  a.ra, a.dec,
  phot_g_mean_mag,
  dist_50,
  spectral
FROM gcns.main AS a
LEFT OUTER JOIN hdgaia.main AS b 
  ON (b.source_id_dr3=a.source_id)
ORDER BY dist_50 ASC)
SELECT nearest.*, name
FROM nearest
JOIN cstl.geo AS g
  ON (1=CONTAINS(
    POINT(nearest.ra, nearest.dec), 
    p))

Note how I’m using CONTAINS with the polygon in the constellations table here; that’s the usage I’ve had in mind for this table (and it’s particularly handy with table uploads).

That I have a Common Table Expression (“WITH”) here is due to SQL planner confusion (I’ll post something about that real soon now): With the WITH, the machine first selects the nearest 100 rows and then does the (relatively costly) spatial match, without it, the machine (somewhat surprisingly) did the geometric match first. This particular confusion looks fixable, but for now I’d ask you for forgiveness for the hack – and the technique is often useful anyway.

If you inspect the result, you will notice that Proxima Cen is right there, but α Cen is missing; without having properly investigated matters, I’d say it’s just too bright for the current Gaia data reduction (and quite possibly even for future Gaia analysis).

Most of the objects on that list that have made it into the HD (i.e., have a spectral type here) are K dwarfs – which is an interesting conspiracy between the limits of the HD (the late red and old white dwarfs are too weak for it) and the limits of Gaia (the few earlier stars within 6 parsec – which includes such luminaries as Sirius at a bit more than 2.5 pc – are just too bright for where Gaia data reduction is now).

Animation

Another fairly tangible thing in the GCNS is the space velcity, given in km/s in the three dimensions U, V, and W. That is, of course, an invitation to look for stellar streams, as, within the relatively small portion of the Milky Way the GCNS looks at, stars on similar orbits will exhibit similar space motions.

Considering the velocity dispersion within a stellar stream will be a few km/s, let’s have the database bin the data. Even though this data is small enough to conveniently handle locally, this kind of remote analysis is half of what TAP is really great at (the other half being the ability to just jump right into a new dataset). You can group by multiple things at the same time:

SELECT 
  COUNT(*) AS n,
  ROUND(uvel_50/5)*5 AS ubin,
  ROUND(vvel_50/5)*5 AS vbin,
  ROUND(wvel_50/5)*5 AS wbin
FROM gcns.main
GROUP BY ubin, vbin, wbin

Note that this (truly) 3D histogram only represents a small minority of the GCNS objects – you need radial velocities for space motion, and these are precious even in the Gaia age.

What really surprised me is how clumpy this distribution is – are we sure we already know all stellar streams in the solar neighbourhood? Watch for yourself (if your browser can’t play webm, complain to your vendor):

[Update (2021-04-01): Mark Taylor points out that the “flashes” you sometimes see when the grid is aligned with the viewing axes (and the general appearance) could be improved by just pulling all non-NULL UVW values out of the table and using a density plot (perhaps shading=density densemap=inferno densefunc=linear). That is quite certainly true, but it would of course defeat the purpose of having on-server aggregation. Which, again, isn’t all that critical for this dataset, so doing the prettier plot actually is a valuable exercise for the reader]

How did I make this video? Well, I started with a Cube Plot in TOPCAT as usual, configuring weighted plotting with n as its weight and played around a bit with scaling out a few outliers. And then I saved the table (to zw.vot), hit “STILTS“ in the plot window and saved the text from there to a text file, zw.sh. I had to change the “in“ clause in the script to make it look like this:

  #!/bin/sh
  stilts plot2cube \
   xpix=887 ypix=431 \
   xlabel='ubin / km/s' ylabel='vbin / km/s' \
   zlabel='wbin / km/s' \
   xmin=-184.5 xmax=49.5 ymin=-77.6 ymax=57.6 \
   zmin=-119.1 zmax=94.1 phi=-84.27 theta=90.35 \
    psi=-62.21 \
   auxmin=1 auxmax=53.6 \
   auxvisible=true auxlabel=n \
   legend=true \
   layer=Mark \
      in=zw.vot \
      x=ubin y=vbin z=wbin weight=n \
      shading=weighted size=2 color=blue

– and presto, “sh zw.sh“ would produce the plot I just had in TOPCAT. This makes a difference because now I can animate this.

In his documentation, Mark already has a few hints on how to build animations; here are a few more ideas on how to organise this. For instance, if, as I want here, you want to animate more than one variable, stilts tloop may become a bit unwieldy. Here’s how to give the camera angles in python:

import sys
from astropy import table
import numpy

angles = numpy.array(
  [float(a) for a in range(0, 360)])
table.Table([
    angles,
    40+30*numpy.cos((angles+57)*numpy.pi/180)],
  names=("psi", "theta")).write(
    sys.stdout, format="votable")

– the only thing to watch out for is that the names match the names of the arguments in stilts that you want to animate (and yes, the creation of angles will make numpy afficionados shudder – but I wasn’t sure if I might want to have somewhat more complex logic there).

[Update (2021-04-01): Mark Taylor points out that all that Python could simply be replaced with a straightforward piece of stilts using the new loop table scheme in stilts, where you would simply put

  animate=:loop:0,360,0.5
  acmd='addcol phi $1'
  acmd='addcol theta 40+30*cosDeg($1+57)'

into the plot2cube command line – and you wouldn’t even need the shell pipeline.]

What’s left to do is basically the shell script that TOPCAT wrote for me above. In the script below I’m using a little convenience hack to let me quickly switch between screen output and file output: I’m defining a shell variable OUTPUT, and when I un-comment the second OUTPUT, stilts renders to the screen. The other changes versus what TOPCAT gave me are de-dented (and I’ve deleted the theta and psi parameters from the command line, as I’m now filling them from the little python script):

OUTPUT="omode=out out=pre-movie.png"
#OUTPUT=omode=swing

python3 camera.py |\
stilts plot2cube \
   xpix=500 ypix=500 \
   xlabel='ubin / km/s' ylabel='vbin / km/s' \
   zlabel='wbin / km/s' \
   xmin=-184.5 xmax=49.5 ymin=-77.6 ymax=57.6 \
   zmin=-119.1 zmax=94.1 \
   auxmin=1 auxmax=53.6 \
phi=8 \
animate=- \
afmt=votable \
$OUTPUT \
   layer=Mark \
      in=zw.vot \
      x=ubin y=vbin z=wbin weight=n \
      shading=weighted size=4 color=blue

# render to movie with something like
# ffmpeg -i "pre-movie-%03d.png" -framerate 15 -pix_fmt yuv420p /stream-movie.webm
# (the yuv420p incantation is so real-world 
# web browsers properly will not go psychedelic 
# with the colours)

The comment at the end says how to make a proper movie out of the PNGs this produces, using ffmpeg (packaged with every self-respecting distribution these days) and yielding a webm. Yes, going for mpeg x264 might be a lot faster for you as it’s a lot more likely to have hardware support, but everything around mpeg is so patent-infested that for the sake of your first-born’s soul you probably should steer clear of it.

Movies are fun in webm, too.

The Loneliest Star in the Sky

sky images and a distribution plot
The loneliest star in the sky on the left, and on the right a somewhat more lonelier one (it’s explained in the text). The inset shows the distribution of the 500 loneliest stars on the whole sky in Galactic coordinates.

In early December, the object catalogue of Gaia’s data release 3 was published (“eDR3“), and I’ve been busy in various ways on this data off and on since then – see, for instance, the The Case of the disappearing bits on this blog.

One of the things I have missed when advising people on projects with previous Gaia data releases is a table that, for every object, gives the nearest neighbour. And so for this release I’ve created it and christened it, perhaps just a bit over-grandiosely, “Gaia eDR3 Autocorrelation”. Technically, it is just a long (1811709771 rows, to be precise) list of pairs of Gaia eDR3 source ids, the ids of their nearest neighbour, and a spherical distance between.

This kind of data is useful for many applications, mostly when looking for objects that are close together or (more often) things that fail for such close pairs for a wide variety of reasons. I have taken some pains to not only have close neighbours, though, because sometimes you may want specifically objects far away from others.

As in the case of this article’s featured image: The loneliest star in the sky (as seen by Gaia, that is) is eDR3 6049144983226879232, which is 4.3 arcminutes from its neighbour, 6049144021153793024, which in turn is the second-loneliest star in the sky. They are, perhaps a bit surprisingly, in Ophiuchus (and thus fairly close to the Milky Way plane), and (probably) only about 150 parsec from Earth. Doesn’t sound too lonely, hm? Turns out: these stars are lonely because dust clouds blot out all their neighbours.

Rank three is in another dust cloud, this time in Taurus, and so it continues in low Galactic latitude to rank 8 (4402975278134691456) at Galactic latitude 36.79 degrees; visualising the thing, it turns out it’s again in a dark cloud. What about rank 23 at 83.92 Galactic (3954600105683842048)? That’s probably bona-fide, or at least it doesn’t look very dusty in the either DSS or PanSTARRS. Coryn (see below) estimates it’s about 1100 parsec away. More than 1 kpc above the galactic disk: that’s more what I had expected for lonely stars.

Looking at the whole distribution of the 500 loneliest stars (inset above), things return a bit more to what I had expected: Most of them are around the galactic poles, where the stellar density is low.

So: How did I find these objects? Here’s the ADQL query I’ve used:

SELECT TOP 500 
  ra, dec, source_id, phot_g_mean_mag, ruwe,
  r_med_photogeo,
  partner_id, dist, 
  COORD2(gavo_transform('ICRS', 'GALACTIC', 
    point(ra, dec))) AS glat
FROM
  gedr3dist.litewithdist
  NATURAL JOIN gedr3auto.main
ORDER BY dist DESC

– run this on the TAP server at http://dc.g-vo.org/tap (don’t be shy, it’s a cheap query).

Most of this should be familiar to you if you’ve worked through the first pages of ADQL course. There’s two ADQL things I’d like to advertise while I have your attention:

  1. NATURAL JOIN is like a JOIN USING, except that the database auto-selects what column(s) to join on by matching the columns that have the same name. This is a convenient way to join tables designed to be joined (as they are here). And it probably won’t work at all if the tables haven’t been designed for that.
  2. The messy stuff with GALACTIC in it. Coordinate transformations had a bad start in ADQL; the original designers hoped they could hide much of this; and it’s rarely a good idea in science tools to hide complexity essentially everyone has to deal with. To get back on track in this field, DaCHS servers since about version 1.4 have been offering a user defined function gavo_transfrom that can transform (within reason) between a number of popular reference frames. You will find more on it in the server’s capabilities (in TOPCAT: the “service” tab). What is happening in the query is: I’m making a Point out of the RA and Dec given in the catalogue, tell the transform function it’s in ICRS and ask it to make Galactic coordinates from it, and then take the second element of the result: the latitude.

And what about the gedr3dist.litewithdist table? That doesn’t look a lot like the gaiaedr3.gaiasource we’re supposed to query for eDR3?

Well, as for DR2, I’m again only carrying a “lite” version of the Gaia catalogue in GAVO’s Heidelberg data center, stripped down to the columns you absolutely cannot live without even for the most gung-ho science; it’s called gaia.edr3lite.

But then my impression is that almost everyone wants distances and then hacks something to make Gaia’s parallax work for them. That’s a bad idea as the SNR goes down to levels very common in the Gaia result catalogue (see 2020arXiv201205220B if you don’t take my word for it). Hence, I’m offering a pre-joined view (a virtual table, if you will) with the carefully estimated distances from Coryn Bailer-Jones, and that’s this gedr3dist.litewithdist. Whenever you’re doing something with eDR3 and distances, this is where I’d point you first.

Oh, and I should be mentioning that, of course, I figured out what is in dust clouds and what is not with TOPCAT and Aladin as in our tutorial TOPCAT and Aladin working together (which needs a bit of an update, but you’ll figure it out).

There’s a lot more fun to be had with this (depending on what you find fun in). What about finding the 10 arcsec-pairs with the least different luminosities (which might actually be useful for testing some optics)? Try this:

SELECT TOP 300 
  a.source_id, partner_id, dist, 
  a.phot_g_mean_mag AS source_mag,
  b.phot_g_mean_mag AS partner_mag,
  abs(a.phot_g_mean_mag-b.phot_g_mean_mag) AS magdiff
FROM gedr3auto.main
  NATURAL JOIN gaia.edr3lite AS a
  JOIN gaia.edr3lite AS b
    ON (partner_id=b.source_id)
WHERE 
  dist BETWEEN 9.999/3600 AND 10.001/3600
  AND a.phot_g_mean_mag IS NOT NULL
  AND b.phot_g_mean_mag IS NOT NULL
ORDER BY magdiff ASC

– this one takes a bit longer, as there’s many 10 arcsec-pairs in eDR3; the query above looks at 84690 of them. Of course, this only returns really faint pairs, and given the errors stars that weak have they’re probably not all that equal-luminosity as that. But fixing all that is left as an exercise to the reader. Given there’s the RP and BP magnitude columns, what about looking for the most colourful pair with a given separation?

Acknowledgement: I couldn’t have coolly mumbled about Ophiuchus or Taurus without the SCS service ivo://cds.vizier/vi/42 (”Identification of a Constellation From Position, Roman 1982”).

Update [2021-02-05]: I discovered an extra twist to this story: Voyager 1 is currently flying towards Ophiuchus (or so Wikipedia claims). With an industrial size package of artistic licence you could say: It’s coming to keep the loneliest star company. But of course: by the time Voyager will be 150 pc from earth, eDR3 6049144983226879232 will quite certainly have left Ophiuchus (and Voyager will be in a completely different part of our sky, that wouldn’t look familar to us at all) – so, I’m afraid apart from a nice conincidence in this very moment (galactically speaking), this whole thing won’t be Hollywood material.

DaCHS 2.2 is out

[Image: DaCHS "entails" 2.2]
DaCHS 2.2 adds support for what simple semantics we currently do in the VO. Which is a welcome excuse to abuse one of the funny symbols semanticians love so much.

Today, I’ve released DaCHS 2.2, the second stable version of DaCHS running on Python 3. Indeed, we have ironed out a few sore spots that have put that “stable” into question, especially if you didn’t run things on Debian Buster. Mind you, playing it safe and just going for Debian is still recommended: Compared to the Python 2 world, where things largely didn’t break for a decade, the Python 3 universe is still shaking out, and so the versions of dependencies do matter. It’s actually fairly gruesome how badly pyparsing 2.4 will break DaCHS. But that’s for another day.

Despite this piece of fearmongering, it’d be great if you could upgrade your installations if you are running DaCHS, and it’s pretty safe if you’re on Debian buster anyway (and if you’re running Debian in the first place, you should be running buster by now).

Here are the more notable changes in this release:

  • DaCHS can now (relatively easily) write time series in the form of what Ada Nebot’s Time Series Annotation note proposes. See the tutorial chapter on building time series for how to do that in practice. Seriously: If you have time series to publish, by all means try this out. The specification can still be fixed, and so this is the perfect time to find problems with the plan.
  • The 2.2 release contains support for the MOC ADQL functions mentioned in the last post on this blog. Of course, to make them work, you will still have to acquaint your database with the new functionality.
  • DaCHS has learned to use IVOA vocabularies as per the current draft for Vocabularies in the VO 2. The most visible effect for you probably is that DaCHS now warns if your subject keywords are not taken from the Unified Astronomy Thesaurus (UAT) – which they almost certainly are not, because the actual format of these keywords is a bit funky. On the other hand, if you employ the “plain” root page template (see the root template in our templating guide if you are not sure what I am talking about here), you will get nice, human-friendly labels for the computer-friendly terms you ought to put into subjects. In case you don’t bother: Given I’m currently serving as chair of the semantics working group of the IVOA, the whole topic will certainly come up again soon, and at that point I will probably also talk about another semantics-related newcomer to DaCHS, the gavo_vocmatch ADQL UDF.
  • There is a new command dachs datapack for interacting with frictionless data packages. The idea is that you can say dachs datapack create myres/q myres.pack and obtain an archive of all that is necessary to re-create myres on another DaCHS installation, where you would say dachs datapack load myres.pack. Frankly, this isn’t much different from just tarring up the resource directory at this point, except that any cruft that may have accumulated in the directory is skipped and there is a bit of structured metadata. But then interoperability always starts slowly. Note, by the way, that this certainly does not teach DaCHS to do anything sensible with third-party data packages; while I’ve not thought hard about this, as it seems a remote use case, I am pretty sure that even the “tabular data packages” that refine the rough general metadata quite a bit simply have nowhere near enough metadata to create a useful VO resource or TAP table.
  • As part of my never-ending struggle against bitrot (in case you’ve always wondered what “curation” means: that, essentially), I’m running dachs val -vc ALL in my own data center once every month. This used to traverse the file system to locate all RDs defined on a box and then make sure they are still ok and their definitions match the database schema. That behaviour has now changed a bit: It will only check published RDs now. I cannot lie: the main reason for the change is because on my production machine the file system traversal has taken longer and longer as data accumulated. But then beyond that there is much less to worry when unpublished gets a little bit mouldy. To get back the old behaviour of validating all RDs that are reachable by the server, use ALL_RECURSE instead of ALL.
  • DaCHS has traditionally assumed that you are running multiple services on one site, which is why its root page is rendered over a service that exposes metadata on local resources. If that doesn’t quite work for how you use DaCHS – perhaps because you want to have your own custom renderers and data functions on your root page, perhaps because you only have one browser-based service and that should be the root page right away –, you can now override what is shown when people access the root URI of your DaCHS installation by setting the [web]root config item to the path of the resource you want as root (e.g., myres/q/s/fixed when the root page should be made by the fixed renderer on the service s within the RD myres/q).
  • Scripting in DaCHS is a powerful way to execute python or SQL code when certain things happen. That seems an odd thing to want until you need it; then you need it badly. Since DaCHS 2.2, scripts executed before or after the creation of a table, before its deletion, or after its meta data has been updated, can sit on tables (where they have always belonged). Before, they could only be on makes (where they can still sit, but of course they are then only executed if the table is operated through that particular make) and RDs (from where they could be copied). That latter location is now forbidden in order to free up RD scripts for later sanitation. Use STREAM and FEED instead if you really used something like that (and I’d bet you don’t).
  • Minor behavioural changes: (a) Due to a bug, you could write things like <schema foo="bar">my_schema<schema>, i.e., have attributes on attributes written in element form. That is now flagged as an error. Since that attribute was fed to the embedding element, you might need to add it there. (b) If you have custom flot plots in one of your templates (and you don’t if you don’t know what I’m talking about), you now have to set style to Points or Lines where you had usingIndex 0 or 1 before. (c) The sidebar template no longer has links to a privacy policy (that few bothered to fill out). See extra sidebar items in the tutorial on how to get them back or add something else.

The most important change comes last: The default logo DaCHS shows unless you override it is no longer the GAVO logo. That’s, really, been inappropriate from the start. It’s now the DaCHS logo, the thing that’s in this posts’s article image. Which isn’t quite as tasteful as the GAVO one, true. But I trust we’ll all get used to it.

Crazy Shapes in TAP

OpenNGC shapes
A complex shape from OpenNGC: MOCs need not be convex, or simply connected, or anything.

So far when you did spherical geometry in ADQL, you had points, circles, and polygons as data types, and you could test for intersection and containment as operations. This feature set is a bit unsatisfying because there are no (algebraic) groups in this picture: When you join or intersect two circles, the result only is a circle if one contains the other. With non-intersecting polygons, you will again not have a (simply connected) spherical polygon in the end.

Enter MOCs (which I’ve mentioned a few times before on this blog): these are essentially arbitrary shapes on the sky, in practice represented through lists of pixels, cleverly done so they can be sufficiently precise and rather compact at the same time. While MOCs are powerful and surprisingly simple in practice, ADQL doesn’t know about them so far, which limits quite a bit what you can do with them. Well, DaCHS would serve them since about 1.3 if you managed to push them into the database, but there were no operations you could do on them.

Thanks to work done by credativ (who were really nice to work with), funded with some money we had left from our previous e-inf-astro project (BMBF FKZ 05A17VH2) on the pgsphere database extension, this has now changed. At least on the GAVO data center, MOCs are now essentially first-class citizens that you can create, join, and intersect within ADQL, and you can retrieve the results. All operators of DaCHS services are just a few updates away from being able to offer the same.

So, what can you do? To follow what’s below, get a sufficiently new TOPCAT (4.7 will do) and open its TAP client on http://dc.g-vo.org/tap (a.k.a. GAVO DC TAP).

Basic MOC Operations in TAP

First, let’s make sure you can plot MOCs; run

SELECT name, deepest_shape
FROM openngc.shapes

Then do Graphics/Sky Plot, and in the window that pops up then, Layers/Add Area Control. Then select your new table in the Position tab, and finally choose deepest_shape as area (yeah, this could become a bit more automatic and probably will over time). You will then see the footprints of a few NGC objects (OpenNGC’s author Mattia Verga hasn’t done all yet; he certainly welcomes help on OpenNGC’s version control repo), and you can move around in the plot, yielding perhaps something like Fig. 1.

Now let’s color these shapes by object class. If you look, openngc.data has an obj_type column – let’s group on it:

SELECT
  obj_type,
  shape,
  AREA(shape) AS ar
FROM (
  SELECT obj_type, SUM(deepest_shape) AS shape
  FROM openngc.shapes
  NATURAL JOIN openngc.data
  GROUP BY obj_type) AS q

(the extra subquery is a workaround necessary because the area function wants a geometry or a column reference, and ADQL doesn’t allow aggregate functions – like sum – as either of these).

Coloured shapes
Fig. 2: OpenNGC shapes grouped and coloured by type.

In the result you will see that so far, contours for about 40 square degrees of star clusters with nebulae have been put in, but only 0.003 square degrees of stellar associations. And you can now plot by the areas covered by the various sorts of objects; in Fig. 2, I’ve used Subsets/Classify by Column in TOPCAT’s Row Subsets to have colours indicate the different object types – a great workaround when one deals with categorial variables in TOPCAT.

MOCs and JOINs

Another table that already has MOCs in them is rr.stc_spatial, which has the coverage of VO resources (and is the deeper reason I’ve been pushing improved MOC support in pgsphere – background); this isn’t available for all resources yet , but at least there are about 16000 in already. For instance, here’s how to get the coverage of resources talking about planetary nebulae:

SELECT ivoid, res_title, coverage
FROM rr.subject_uat
  NATURAL JOIN rr.stc_spatial
  NATURAL JOIN rr.resource
WHERE uat_concept='planetary-nebulae'
  AND AREA(coverage)<20

(the rr.subject_uat table is a local extension to RegTAP that will be the subject of some future blog post; you could also use rr.res_subject, but because people still use wildly different keyword schemes – if any –, that wouldn’t be as much fun). When plotted, that’s the left side of Fig. 3. If you do that yourself, you will notice that the resolution here is about one degree, which is a special property of the sort of MOCs I am proposing for the Registry: They are of order 6. Resolution in MOC goes up with order, doubling with every step. Thus MOCs of order 7 have a resolution of about half a degree, MOCs of order 5 a resolution of about two degrees.

One possible next step is fetch the intersection of each of these coverages with, say, the DFBS (cf. the post on Byurakan spectra). That would look like this:

SELECT 
  ivoid, 
  res_title,
  gavo_mocintersect(coverage, dfbscoverage) as ovrlp
FROM (
  SELECT ivoid, res_title, coverage
  FROM rr.subject_uat
  NATURAL JOIN rr.stc_spatial
  NATURAL JOIN rr.resource
  WHERE uat_concept='planetary-nebulae'
  AND AREA(coverage)<20) AS others
CROSS JOIN (
  SELECT coverage AS dfbscoverage 
  FROM rr.stc_spatial
  WHERE ivoid='ivo://org.gavo.dc/dfbsspec/q/spectra') AS dfbs

(the DFBS’ identifier I got with a quick query on WIRR). This uses the gavo_mocintersect user defined function (UDF), which takes two MOCs and returns a MOC of their common pixels. Which is another important part why MOCs are so cool: together with union and intersection, they form groups. It should not come as a surprise that there is also a gavo_mocunion UDF. The sum aggregate function we’ve used in our grouping above is (conceptually) built on that.

Planetary Nebula footprint and plate matches
Fig. 3: Left: The common footprint of VO resources declaring a subject of planetary-nebula (and declaring a footprint). Right bottom: Heidelberg plates intersecting this, and, in blue, level-6 intersections. Above this, an enlarged detail from this plot.

You can also convert polygons and circles to MOCs using the (still DaCHS-only) MOC constructor. For instance, you could compute the coverage of all resources dealing with planetary nebulae, filtering against obviously over-eager ones by limiting the total area, and then match that against the coverages of images in, say, the Königstuhl plate achives HDAP. Watch this:

SELECT 
  im.*,
  gavo_mocintersect(MOC(6, im.coverage), pn_coverage) as ovrlp
FROM (
  SELECT SUM(coverage) AS pn_coverage
  FROM rr.subject_uat
  NATURAL JOIN rr.stc_spatial
  WHERE uat_concept='planetary-nebulae'
  AND AREA(coverage)<20) AS c
JOIN lsw.plates AS im
ON 1=INTERSECTS(pn_coverage, MOC(6, coverage))

– so, the MOC(order, geo) function should give you a MOC for other geometries. There are limits to this right now because of limitations of the underlying MOC library; in particular, non-convex polygons are not supported right now, and there are precision issue. We hope this will be rectified soon-ish when we base pgsphere’s MOC operations on the CDS HEALPix library. Anyway, the result of this is plotted on the right of Fig. 3.

Open Ends

In case you have MOCs from the outside, you can also construct MOCs from literals, which happen to be the ASCII MOCs from the standard. This could look like this:

SELECT TOP 1 
  MOC('4/30-33 38 52 7/324-934') AS ar 
FROM tap_schema.tables

For now, you cannot combine MOCs in CONTAINS and INTERSECTS expressions directly; this is mainly because in such an operation, the machine as to decide on the order of the MOC the other geometries are converted to (and computing the predicates between geometry and MOC directly is really painful). This means that if you have a local table with MOCs in a column cmoc that you want to compare against a polygon-valued column coverage in a remote table like this:

SELECT db.* FROM 
  lsw.plates AS db
  JOIN tap_upload.t6
ON 1=CONTAINS(coverage, cmoc) -- fails!

you will receive a rather scary message of the type “operator does not exist: spoly <@ smoc”. To fix it (until we’ve worked out how to reasonably let the computer do that), explicitly convert the polygon:

SELECT db.* FROM 
  lsw.plates AS db
  JOIN tap_upload.t6
ON 1=CONTAINS(MOC(7, coverage), cmoc)

(be stingy when choosing the order here – MOCs that already exist are fast, but making them at high order is expensive).

Having said all that: what I’ve written here is bleeding-edge, and it is not standardised yet. I’d wager, though, that we will see MOCs in ADQL relatively soon, and that what we will see will not be too far from this experiment. Well: Some rough edges, I’d hope, will still be smoothed out.

Getting This on Your Own DaCHS Installation

If you are running a DaCHS installation, you can contribute to takeup (and if not, you can stop reading here). To do that, you need to upgrade to DaCHS’s latest beta (anything newer than 2.1.4 will do) to have the ADQL extension, and, even more importantly, you need to install the postgresql-postgres package from our release repository (that’s version 1.1.4 or newer; in a few weeks, getting it from Debian testing would work as well).

You will probably not get that automatically, because if you followed our normal installation instructions, you will have a package called postgresql-11-pgsphere installed (apologies for this chaos; as ususal, every single step made sense). The upshot is that with our release repo added, sudo apt install postgresql-pgsphere should give you the new code.

That’s not quite enough, though, because you also need to acquaint the database with the new functions. This can only be done with database administrator privileges, which DaCHS by design does not possess. What DaCHS can do is figure out the commands to do that when it is called as dachs upgrade -e. Have a look at the output, and if you are satisfied it is about what to expect, just pipe it into psql as a superuser; in the default installation, dachsroot would be sufficiently privileged. That is:

dachs upgrade -e | psql gavo   # as dachsroot

If running

select top 1 gavo_mocunion(moc('1/3'), moc('2/9')) 
from tap_schema.tables

through your TAP endpoint returns ‘1/3 2/9’, then all is fine. For entertainment, you might also make sure that gavo_mocintersect(moc('1/3'), moc('2/13')) is 2/13 as expected, and that if you intersect with 2/3 you get back an empty string.

So – let’s bring MOCs to ADQL!

Histograms and Hidden Open Clusters

[image: reddish pattern]
Colour-coded histograms for distances of stars in the direction of some NGC open clusters — one cluster per line, so you’re looking a a couple of Gigabytes of data here. If you want this a bit more precise: Read the article and generate your own image.

I have spent a bit of time last week polishing up what will (hopefully) be the definitive source of common ADQL User Defined Functions (UDFs) for IVOA review. What’s a UDF, you ask? Well, it is an extension to ADQL where service operators can invent new functionality. If you have been following this blog for a while, you will probably remember the ivo_healpix_index function from our dereddening exercise (and some earlier postings): That was an UDF, too.

This polishing work reminded me of a UDF I’ve wanted to blog about for a quite a while, available in DaCHS (and thus on our Heidelberg Data Center) since mid-2018: gavo_histogram. This, I claim, is a powerful tool for analyses over large amounts of data with rather moderate local means.

For instance, consider this classic paper on the nature of NGC 2451: What if you were to look for more cases like this, i.e., (indulging in a bit of poetic liberty) open clusters hidden “behind” other open clusters?

Somewhat more technically this would mean figuring out whether there are “interesting” patterns in the distance and proper motion histograms towards known open clusters. Now, retrieving the dozens of millions of stars that, say, Gaia, has in the direction of open clusters to just build histograms – making each row count for a lot less than one bit – simply is wasteful. This kind of counting and summing is much better done server-side.

On the other hand, SQL’s usual histogram maker, GROUP BY, is a bit unwieldy here, because you have lots of clusters, and you will not see anything if you munge all the histograms together. You could, of course, create a bin index from the distance and then group by this bin and the object name, somewhat like ...ROUND(r_est/20) as bin GROUP by name, bin – but that takes quite a bit of mangling before it can conveniently be used, in particular when you take independent distributions over multiple variables (“naive Bayesian”; but then it’s the way to go if you want to capture dependencies between the variables).

So, gavo_histogram to the rescue. Here’s what the server-provided documentation has to say (if you use TOPCAT, you will find this in the ”Service” tab in the TAP windows’ ”Use Service” tab):

gavo_histogram(val REAL, lower REAL, upper REAL, nbins INTEGER) -> INTEGER[]

The aggregate function returns a histogram of val with nbins+2 elements. Assuming 0-based arrays, result[0] contains the number of underflows (i.e., val<lower), result[nbins+1] the number of overflows. Elements 1..nbins are the counts in nbins bins of width (upper-lower)/nbins. Clients will have to convert back to physical units using some external communication, there currently is no (meta-) data as to what lower and upper was in the TAP response.

This may sound a bit complicated, but the gist really is: type gavo_histogram(r_est, 0, 2000, 20) as hist, and you will get back an array with 20 bins, roughly 0..100, 100..200, and so on, and two extra bins for under- and overflows.

Let’s try this for our open cluster example. The obvious starting point is selecting the candidate clusters; we are only interested in famous clusters, so we take them from the NGC (if that’s too boring for you: with TAP uploads you could take the clusters from Simbad, too), which conveniently sits in my data center as openngc.data:

select name, raj2000, dej2000, maj_ax_deg
from openngc.data
where obj_type='OCl'

Then, we need to add the stars in their rough directions. That’s a classic crossmatch, and of course these days we use Gaia as the star catalogue:

  select name, source_id
  from openngc.data 
  join gaia.dr2light
  on (
    1=contains(
      point(ra,dec),
      circle(raj2000, dej2000, maj_ax_deg)))
  where obj_type='OCl')

This is now a table of cluster names and Gaia source ids of the candidate stars. To add distances, you could fiddle around with Gaia parallaxes, but because there is a 1/x involved deriving distances, the error model is complicated, and it is much easier and safer to adopt Bailer-Jones et al’s pre-computed distances and join them in through source_id.

And that distance estimation, r_est, is exactly what we want to take our histograms over – which means we have to group by name and use gavo_histogram as an aggregate function:

with ocl as (
  select name, raj2000, dej2000, maj_ax_deg, source_id
  from openngc.data 
  join gaia.dr2light
  on (
    1=contains(
      point(ra,dec),
      circle(raj2000, dej2000, maj_ax_deg)))
  where obj_type='OCl')

select
  name,
  gavo_histogram(r_est, 0, 4000, 200) as hist
from
  gdr2dist.main
  join ocl
  using (source_id)
where r_est!='NaN'
group by name

That’s it! This query will give you (admittedly somewhat raw, since we’re ignoring the confidence intervals) histograms of the distances of stars in the direction of all NGC open clusters. Of course, it will run a while, as many millions of stars are processed, but TAP async mode easily takes care of that.

Oh, one odd thing is left to discuss (ignore this paragraph if you don’t know what I’m talking about): r_est!='NaN'. That’s not quite ADQL but happens to do the isnan of normal programming languages at least when the backend is Postgres: It is true if computations failed and there is an actual NaN in the column. This is uncommon in SQL databases, and normal NULLs wouldn’t hurt gavo_histogram. In our distance table, some NaNs slipped through, and they would poison our histograms. So, ADQL wizards probably should know that this is what you do for isnan, and that the usual isnan test val!=val doesn’t work in SQL (or at least not with Postgres).

So, fire up your TOPCAT and run this on the TAP server http://dc.g-vo.org/tap.

You will get a table with 618 (or so) histograms. At this point, TOPCAT can’t do a lot with them. So, let’s emigrate to pyVO and save this table in a file ocl.vot

My visualisation proposition would be: Let’s substract a “background” from the histograms (I’m using splines to model that background) and then plot them row by row; multi-peaked rows in the resulting image would be suspicious.

This is exactly what the programme below does, and the image for this article is a cutout of what the code produces. Set GALLERY = True to see how the histograms and background fits look like (hit ‘q’ to get to the next one).

In the resulting image, any two yellow dots in one line are at least suspicious; I’ve spotted a few, but they are so consipicuous that others must have noticed. Or have they? If you’d like to check a few of them out, feel free to let me know – I think I have a few ideas how to pull some VO tricks to see if these things are real – and if they’ve been spotted before.

So, here’s the yellow spot programme:

from astropy.table import Table
import matplotlib.pyplot as plt
import numpy
from scipy.interpolate import UnivariateSpline

GALLERY = False

def substract_background(arr):
    x = range(len(arr))
    mean = sum(arr)/len(arr)
    arr = arr/mean
    background = UnivariateSpline(x, arr, s=100)
    cleaned = arr-background(x)

    if GALLERY:
        plt.plot(x, arr)
        plt.plot(x, background(x))
        plt.show()

    return cleaned


def main():
    tab = Table.read("ocl.vot")
    hist = numpy.array([substract_background(r["hist"][1:-1])
      for r in tab])
    plt.matshow(hist, cmap='gist_heat')
    plt.show()
    

if __name__=="__main__":
    main()

The Bochum Galactic Disk Survey

[Image: Patches of higher perceived variability on the Sky]
Fig 1: How our haphazard variability ratio varies over the sky (galactic coordinates). And yes, it’s clear that this isn’t dominated by physical variability.

About a year ago, I reported on a workshop on “Large Surveys with Small Telescopes” in Bamberg; at around the same time, I’ve published an example for those, the Bochum Galactic Disk Survey BGDS, which used a twin 15 cm robotic telescope in some no longer forsaken place in the Andes mountains to monitor the brighter stars in the southern Milky Way. While some tables from an early phase of the survey have been on VizieR for a while, we now publish the source images (also in SIAP and Obscore), the mean photometry (via SCS and TAP) and, perhaps potentially most fun of all, the the lightcurves (via SSAP and TAP) – a whopping 35 million of the latter.

This means that in tools like Aladin, you can now find such light curves (and images in two bands from a lot of epochs) when you are in the survey’s coverage, and you can run TAP queries on GAVO’s http://dc.g-vo.org/tap server against the full photometry table and the time series.

Regular readers of this blog will not be surprised to see me use this as an excuse to show off a bit of ADQL trickery.

If you have a look at the bgds.phot_all table in your favourite TAP client, you’ll see that it has a column amp, giving the difference between the highest and lowest magnitude. The trouble is that amp for almost all objects just reflects the measurement error rather than any intrinsic variability. To get an idea what’s “normal” (based on the fact that essentially all stars have essentially constant luminosity on the range and resolution scales considered here), run a query like

SELECT ROUND(amp/err_mag*10)/10 AS bin, COUNT(*) AS n
FROM bgds.phot_all
WHERE nobs>10
GROUP BY bin

As this scans the entire 75 million rows of the table, you will probably have to use async mode to run this.

[image: distribution of amplitude/mag error
Figure 2: The distribution of amplitude over magnitude error for all BGDS objects with nobs>10 (blue) and the subset with a mean magnitude brighter than 15 (blue).

When it comes back, you will have, for objects where any sort of statistics make sense at all (hence nobs>10), a histogram (of sorts) of the amplitude in units of upstream’s magnitude error estimation. If you log-log-plot this, you’ll see something like Figure 2. The curve at least tells you that the magnitude error estimate is not very far off – the peak at about 3 “sigma” is not unreasonable since about half of the objects have nobs of the order of a hundred and thus would likely contain outliers that far out assuming roughly Gaussian errors.

And if you’re doing a rough cutoff at amp/magerr>10, you will get perhaps not necessarily true variables, but, at least potentially interesting objects.

Let’s use this insight to see if we spot any pattern in the distribution of these interesting objects. We’ll use the HEALPix technique I’ve discussed three years ago in this blog, but with a little twist from ADQL 2.1: The Common Table Expressions or CTEs I have already mentioned in my blog post on ADQL 2.1 and then advertised in the piece on the Henry Draper catalogue. The brief idea, again, is that you can write queries and give them a name that you can use elsewhere in the query as if it were an actual table. It’s not much different from normal subqueries, but you can re-use CTEs in multiple places in the query (hence the “common”), and it’s usually more readable.

Here, we first create a version of the photometry table that contains HEALPixes and our variability measure, use that to compute two unsophisticated per-HEALPix statistics and eventually join these two to our observable, the ratio of suspected variables to all stars observed (the multiplication with 1.0 is a cheap way to make a float out of a value, which is necessary here because a/b does integer division in ADQL if a and b are both integers):

WITH photpoints AS (
  SELECT 
    amp/err_mag AS redamp,
    amp,
    ivo_healpix_index(5, ra, dec) AS hpx
  FROM bgds.phot_all
  WHERE 
    nobs>10
    AND band_name='SDSS i'
    AND mean_mag<16),
all_objs AS (
  SELECT count(*) AS ct,
    hpx
    FROM photpoints GROUP BY hpx),
strong_var AS (
  SELECT COUNT(*) AS ct,
    hpx
    FROM photpoints
    WHERE redamp>4 AND amp>1 GROUP BY hpx)
SELECT
  strong_var.ct/(1.0*all_objs.ct) AS obs,
  all_objs.ct AS n,
  hpx
FROM strong_var JOIN all_objs USING (hpx)
WHERE all_objs.ct>20

If you plot this using TOPCAT’s HEALPix thingy and ask it to use Galactic coordinates, you’ll end up with something like Figure 1.

There clearly is some structure, but given that the variables ratio reaches up to 0.2, this is still reflecting instrumental or pipeline effects and thus earthly rather than Astrophysics. And that’s going beyond what I’d like to talk about on a VO blog, although I’l take any bet that you will see significant structure in the spatial distribution of the variability ratio at about any magnitude cutoff, since there are a lot of different population mixtures in the survey’s footprint.

Be that as it may, let’s have a quick look at the time series. As with the short spectra from Byurakan use case, we’ve stored the actual time series as arrays in the database (the mjd and mags columns in bgds.ssa_time_series. Unfortunately, since they are a lot less array-like than homogeneous spectra, it’s also a lot harder to do interesting things with them without downloading them (I’m grateful for ideas for ADQL functions that will let you do in-DB analysis for such things). Still, you can at least easily download them in bulk and then process them in, say, python to your heart’s content. The Byurakan use case should give you a head start there.

For a quick demo, I couldn’t resist checking out objects that Simbad classifies as possible long-period variables (you see, as I write this, the public bohei over Betelgeuse’s brief waning is just dying down), and so I queried Simbad for:

SELECT ra, dec, main_id
FROM basic
WHERE
  otype='LP?'
  AND 1=CONTAINS(
     POINT('', ra, dec),
     POLYGON('', 127, -30, 112, -30, 272, -30, 258, -30))

(as of this writing, Simbad still needs the ADQL 2.0-compliant first arguments to POINT and POLYGON), where the POLYGON is intended to give the survey’s footprint. I obtained that by reading off the coordinates of the corners in my Figure 1 while it was still in TOPCAT. Oh, and I had to shrink it a bit because Simbad (well, the underlying Postgres server, and, more precisely, its pg_sphere extension) doesn’t want polygons with edges longer than π. This will soon become less pedestrian: MOCs in relational databases are coming; more on this soon.

[TOPCAT action shot with a light curve display]
Fig 3: V566 Pup’s BGDS lightcuve in a TOPCAT configured to auto-plot the light curves associated with a row from the bgds.ssa_time_series table on the GAVO DC TAP service.

If you now do the usual spiel with an upload crossmatch to the bgds.ssa_time_series table and check “Plot Table” in Views/Activation Action, you can quickly page through the light curves (TOPCAT will keep the plot style as you go from dataset to dataset, so it’s worth configuring the lines and the error bars). Which could bring you to something like Fig. 3; and that would suggest that V* V566 Pup isn’t really long-period unless the errors are grossly off.

Parallel Queries

Image: Plot of run times
An experiment with parallel querying of PPMX, going from single-threaded execution to using seven workers.

Let me start this post with a TL;DR for

scientists
Large analysis queries (like those that contain a GROUP BY clause) profit a lot from parallel execution, and you needn’t do a thing for that.
DaCHS operators
When you have large tables, Postgres 11 together with the next DaCHS release may speed up your responses quite dramatically in some cases.

So, here’s the story –

I’ve finally overcome my stretch trauma and upgraded the Heidelberg data center’s database server to Debian buster. With that, I got Postgres 11, and I finally bothered to look into what it takes to enable parallel execution of database queries.

Turns out: My Postgres started to do parallel execution right away, but just in case, I went for the following lines in postgresql.conf:

max_parallel_workers_per_gather = 4
max_worker_processes = 10
max_parallel_workers = 10

Don’t quote me on this – I frankly admit I haven’t really developed a feeling for the consequences of max_parallel_workers_per_gather and instead just did some experiments while the box was loaded otherwise, determining where raising that number has a diminishing return (see below for more on this).

The max_worker_processes thing, on the other hand, is an educated guess: on my data center, there’s essentially never more than one person at a time who’s running “interesting”, long-running queries (i.e., async), and that person should get the majority of the execution units (the box has 8 physical CPUs that look like 16 cores due to hyperthreading) because all other operations are just peanuts in comparison. I’ll gladly accept advice to the effect that that guess isn’t that educated after all.

Of course, that wasn’t nearly enough. You see, since TAP queries can return rather large result sets – on the GAVO data center, the match limit is 16 million rows, which for a moderate row size of 2 kB already translates to 32 GB of memory use if pulled in at once, half the physical memory of that box –, DaCHS uses cursors (if you’re a psycopg2 person: named cursors) to stream results and write them out to disk as they come in.

Sadly, postgres won’t do parallel plans if it thinks people will discard a large part of the result anyway, and it thinks that if you’re coming through a cursor. So, in SVN revision 7370 of DaCHS (and I’m not sure if I’ll release that in this form), I’m introducing a horrible hack that, right now, just checks if there’s a literal “group” in the query and doesn’t use a cursor if so. The logic is, roughly: With GROUP, the result set probably isn’t all that large, so streaming isn’t that important. At the same time, this type of query is probably going to profit from parallel execution much more than your boring sequential scan.

This gives rather impressive speed gains. Consider this example (of course, it’s selected to be extreme):

import contextlib
import pyvo
import time

@contextlib.contextmanager
def timeit(activity):
  start_time = time.time()
  yield
  end_time = time.time()
  print("Time spent on {}: {} s".format(activity, end_time-start_time))


svc = pyvo.tap.TAPService("http://dc.g-vo.org/tap")
with timeit("Cold (?) run"):
  svc.run_sync("select round(Rmag) as bin, count(*) as n"
    " from ppmx.data group by bin")
with timeit("Warm run"):
  svc.run_sync("select round(Rmag) as bin, count(*) as n"
    " from ppmx.data group by bin")

(if you run it yourself and you get warnings about VOTable versions from astropy, ignore them; I’m right and astropy is wrong).

Before enabling parallel execution, this was 14.5 seconds on a warm run, after, it was 2.5 seconds. That’s an almost than a 6-fold speedup. Nice!

Indeed, that holds beyond toy examples. The showcase Gaia density plot,

SELECT
        count(*) AS obs,
        source_id/140737488355328 AS hpx
FROM gaia.dr2light
GROUP BY hpx

(the long odd number is 235416-6, which turns source_ids into level 6-HEALPixes as per Gaia footnote id; please note that Postgres right now isn’t smart enough to parallelise ivo_healpix), which traditionally ran for about an hour is now done in less than 10 minutes.

In case you’d like to try things out on your postgres, here’s what I’ve done to establish the max_parallel_workers_per_gather value above.

  1. Find a table with a few 1e7 rows. Think of a query that will return a small result set in order to not confuse the measurements by excessive client I/O. In my case, that’s a magnitude histogram, and the query would be
    select round(Rmag) as bin, count(*) 
    as n from ppmx.data 
    group by bin;
    

    Run this query once so the data is in the disk cache (the query is “warm”).

  2. Establish a non-parallel baseline. That’s easy to do:
    set max_parallel_workers_per_gather=0;
    
  3. Then run
    explain analyze select round(Rmag) as bin, count(*) as n from ppmx.data group by bin;
    

    You should see a simple query plan with the runtime for the non-parallel execution – in my case, a bit more than 12 seconds.

  4. Then raise the number of max_parallel_workers_per_gatherer successively. Make sure the query plan has lines of the form “Workers Planned” or so. You should see that the execution time falls with the number of workers you give it, up to the value of max_worker_processes – or until postgres decides your table is too small to warrant further parallelisation, which for my settings happened at 7.

Note, though, that in realistic, more complex queries, there will probably be multiple operations that will profit from parallelisation in a single query. So, if in this trivial example you can go to 15 gatherers and still see an improvement, this could actually make things slower for complex queries. But as I said above: I have no instinct yet for how things will actually work out. If you have experiences to share: I’m sure I’m not the only person on dachs-users who’t be interested.

LAMOST5 meets Datalink

One of the busiest spectral survey instruments operated right now is the Large Sky Area Multi-Object Fiber Spectrograph Telescope (LAMOST). And its data in the VO, more or less: DR2 and DR3 have been brought into the VO by our Czech colleagues, but since they currently lack resources to update their services to the latest releases, they have kindly given me their DaCHS resource descriptor, and so I had a head start for publishing DR5 in Heidelberg.

With some minor updates, here it is now: Over nine million medium-resolution spectra covering large parts of the northen sky – the spatial coverage is like this:

[Coverage Healpix map]

There’s lots of fun to be had with this; of course, there’s an SSA service, so when you point Aladin or Splat at some part of the covered sky and look for spectra, chances are you’ll see LAMOST spectra, and when working on some of our tutorials (this one, for example), it happened that LAMOST actually had what I was looking for when writing them.

But I’d like to use the opportunity to mention two other modes of accessing the data.

Tablesample and TOPCAT’s Plot Table activation action

Say you’d like to look at spectra of M stars and would like to have some sample from across the sky, fire up TOPCAT, point its TAP client the GAVO DC TAP service (http://dc.g-vo.org/tap) and run something like

select 
  ssa_pubDID, accref, raj2000, dej2000, ssa_targsubclass
from lamost5.data tablesample(1)
where 
  ssa_targsubclass like 'M%' 

Image: stacked spectra

This is using the TABLESAMPLE modifier in the from clause, which isn’t standard ADQL yet. As mentioned in the DaCHS 1.4 announcement, DaCHS has a prototype implementation of what’s been discussed on the IVOA’s DAL mailing list: pick a part of a table rather than the full one. It takes a percentage as an argument, and tells the server to choose about this percentage of the table’s records using a reasonable and fast heuristic. Note that this won’t give you perfect statistical sampling, but if it’s not “good enough” for some purpose, I’d like to learn about that purpose.

Drawing a proper statistical sample, on the other hand, would take minutes on the GAVO database server – with tablesample, I had the roughly 6000 spectra the above query returns essentially instantaneously, and from eyeballing a sky plot of them, I’d say their distribution is close enough to that of the full DR5. So: tablesample is your friend.

For a quick look at the spectra themselves, in TOPCAT click Views/Activation Actions, check “Plot Table” and make sure TOPCAT proposes the accref column as “Table Location” (if you don’t see these items, update your TOPCAT – it’s worth it). Now click on a row or perhaps a dot on a plot and behold an M spectrum.

Cutouts via Datalink

LAMOST releases spectra in FITS format pretty much like the ones you may know from SDSS. The trick above works because we instead hand out proper, IVOA Spectral Data Model-compliant spectra through SSA and TAP. However, if you need to go back to the original files, you can, using Datalink. If you’re unsure what this Datalink thing is: call me vain, but I still like my 2015 ADASS poster explaining that. In TOPCAT, you’d be using the “Invoke Service” activation action to get to the datalinks.

If you have actual work to do, offloading repetetive work to the computer is what you want, and fortunately, pyVO knows about datalink, too. I give you this is hard to discover so far, and the interface is… a tiny bit clunky. Until some kind soul cleans up the pyVO datalink act, a poster Stefan and I showed at the 2017 ADASS might give you an idea which buttons to press. Or read on and see how things work for LAMOST5.

The shortest way to datalinks is a TAP query that at least retrieves the ssa_pubdid column (that’s a must; Datalink can’t work without it) and, on the result, run the iter_datalinks method. This returns an object in which you can find the associated data items (in this case, a preview and the original FITS with the #progenitor semantics), plus the cutout service.

Hence, a minimal example for pulling the legacy FITS links out of the first three items in lamost5.data would look like this:

import pyvo

svc = pyvo.dal.TAPService("http://dc.g-vo.org/tap")
for dl in svc.run_sync("select top 3 ssa_pubdid"
        " from lamost5.data").iter_datalinks():
    print(next(dl.bysemantics("#progenitor")
        )["access_url"].decode("ascii"))

This is a bit different from listing 2 in the poster linked above because it’s python3, so getting the first element from iterator an iterator looks a bit different, and (curse astropy.votable for returning VOTable chars as bytes rather than strings!) you’ll want to turn the URL into a proper string manually.

Another, actually more interesting, thing you can do with Datalink is cut out regions of interest. The LAMOST spectra are fairly long (though of course still small by image standards), so if you’re only interested in a single line, you can save a bit of storage and bandwidth over blindly pulling the whole thing.

For instance, if you wanted to pull the vicinity of the H and K Fraunhofer lines from the matches in the loop in the snippet above, you could say:

from astropy import units as u
proc = next(dl.iter_procs())
cutout = proc.processed(band=(392*u.nm,398*u.nm))

And this is what I’ve done for the decorative left border above: it’s the H and K line profiles for 0.1% of the stars LAMOST has classified as G8. Building the image didn’t take more than a few seconds (where I’d like the cutouts to be faster by a factor of 10; I guess that’s about an afternoon of work for me, so if it’d save you more than that afternoon, poke me to do it).

What’s coming back is tables. By the time python has digested these, they’re numpy record arrays. Thus, you can immediately bring in your beloved scipy (or whatever). For instance, if for some reason you’re convinced that the H and K lines should be fit by identical Gaussians in the boring case and would like find objects for which that’s patently untrue and that hence could be un-boring, here’s how you could do that:

def spectral_model(wl, c1, c2, depth, width):
    return (1
        -depth*numpy.exp(-numpy.square(wl-c1)
            /numpy.square(width))
        -depth*numpy.exp(-numpy.square(wl-c2)
            /numpy.square(width)))

for pubdid, prof in get_profiles(
        "G8", (392*u.nm,398*u.nm), 0.01, 4):
    prof["flux"] /= max(prof["flux"])
    popt, pcov = curve_fit(
        spectral_model, prof["spectral"], prof["flux"],
        sigma=prof["flux_error"],
        p0=[3968, 3934, 1, 1])
    if pcov[3][3]>1:
        break

– where get_profiles is essentially doing the TAP plus datalink routine above, except I’m swallowing spectra with too much noise and I have the function transform the spectral coordinate into the objects’ rest frames. If you’re curious how I’m doing this just based on the IVOA Spectral Data Model, check the source linked at the bottom of this post.

I’ve just run this, and the first spectrum that the machinery flagged as suspicious was this:

Image: A fairly boring late G spectrum

– which doesn’t look like I’ve made a discovery just yet. But that doesn’t mean there’s not a lot to find within LAMOST5’s lines…

To get you up to speed quickly: here’s the actual python3 code I ran for the “analysis” and the plot.

DaCHS 1.4 is out

Dachs logo with "version 1.4" superposed

Since the Groningen Interop is over, it’s time for a DaCHS release, and so, roughly half a year after the release of DaCHS 1.3, today I’ve pushed DaCHS 1.4 into our Debian repository.

As usual, you should upgrade as soon as you find time to do so, because upgrades become more difficult if they span large version gaps; and one of these days you will need some new feature or run into one of the odd bugs. Upgrading is a good opportunity to also get your DaCHS ready for buster by adding the repos mentioned there.

The list of new features is rather short this time around. Here are some noteworthy ones:

  • There’s now an XML grammar that can be used when you have to parse smallish snippets of XML as, for instance, in VOEvent.
  • You can now use TABLESAMPLE(1) after a table specification in DaCHS’ ADQL to tell the database engine to just use 1% of a table for a query. While this isn’t a precise way to sample tables, it’s great when developing queries.
  • Also among new features I’d like to see in ADQL and have therefore put into DaCHS is GENERATE_SERIES(a,b), which is what is known as table-generating function in SQL . If you know SDSS CasJobs, you’ll have seen lots of those already. GENERATE_SERIES, however, is really plain: it just spits out a table with a column with integers between a and b. For an example of why one might what to have that, check out the poster I’m linking to in my ADASS report.
  • If you have an updating data descriptor (usually, because you keep feeding data into a data collection), DaCHS will no longer automatically re-make its dependencies (like, say, views). That’s because that’s not necessary in general, and it’s a pain if every update on an obscore-published table tears down and rebuilds the obscore view. For the rare cases when you do need to rebuild dependencies, there’s now a remakeOnDataChange attribute on data.
  • At the interop, I’ve mentioned a few use cases for knowing which server software you’re talking to, and I’ve said that people should set their server headers to informative values. DaCHS does that now.

To conclude on a low note: This is probably going to be the last release of DaCHS for python 2. Even though we will have to shed a dependency or two that simply will not be ported to python 3, and even though I’m rather unhappy with a few properties of the python 3 port of twisted, there’s probably no way to escape this, given that Debian is purging out python 2 packages quickly already.

So, when we meet again for the next release, you’ll probably be looking at DaCHS 2.0, and where you have custom code in your RDs, it’s rather likely that you’ll see a minor amount of breakage. I promise I’ll do everything I can to make the migration easy for deployers, but I can’t do higher magic, so: If there’s ever been a time to add regression tests to your RDs, it’s now.