• Spectral Units in ADQL

    math formulae.

    In case you find the piece of Python given below too hard to read: It's just this table of conversion expressions between the different SI units we are dealing with here.

    Astronomers these days work all along the electromagnetic spectrum (and beyond, of course). Depending on where they observe, they will have very different instrumentation, and hence some see their messengers very naturally as waves, others quite as naturally as particles, others just as electrons flowing out of a CCD that is sitting behind a filter.

    In consequence, when people say where in the spectrum they are, they use very different notions. A radio astronomer will say “I'm observing at 21 cm” or “at 50 GHz“. There's an entire field named after a wavelength, “submillimeter“, and blueward of that people give their bands in micrometers. Optical astronomers can't be cured of their Ångström habit. Going still more high-energy, after an island of nanometers in the UV you end up in the realm of keV in X-ray, and then MeV, GeV, TeV and even EeV.

    However, there is just one VO (or at least that's where we want to go). Historically, the VO has had a slant towards optical astronomy, which gives us the legacy of having wavelengths in far too many places, including Obscore. Retrospectively, this was an unfortunate choice not only because it makes us look optical bigots, but in particular because in contrast to energy and, by ν = E/h, frequency, messenger wavelength depends on the medium you work in, and I shudder to think how many wavelengths in my data center actually are air wavelengths rather than vacuum wavelengths. Also, as you go beyond photons, energy really is the only thing that reasonably characterises all messengers alike (well, even that still isn't quite settled for gravitational waves as long as we're not done with a quantum theory of gravitation).

    Well – the wavelength milk is spilled. Still, the VO has been boldly expanding its reach beyond the optical and infrared windows (recently, with neutrinos and gravitational waves, not to mention EPN-TAP's in-situ measurements in the solar system, even beyond the electromagnetic spectrum). Which means we will have to accomodate the various customs regarding spectral units described above. Where there are “thick” user interfaces, these can care about that. For instance, my datalink XSLT and javascript lets people constrain spectral cutouts (along BAND) in a variety of units (Example).

    But what if the UI is as shallow as it is in ADQL, where you deal with whatever is in the underlying database tables? This has come up again at last week's EuroVO Technology Forum in virtual Strasbourg in the context of making Obscore more attractive to radio astronomers. And thus I've sat down and taught DaCHS a new user defined function to address just that.

    Up front: When you read this in 2022 or beyond and everything has panned out, the function might be called ivo_specconv already, and perhaps the arguments have changed slightly. I hope I'll remember to update this post accordingly. If not, please poke me to do so.

    The function I'm proposing is, mainly, gavo_specconv(expr, target_unit). All it does is convert the SQL expression expr to the (spectral) target_unit if it knows how to do that (i.e., if the expression's unit and the target unit are spectral units properly written in VOUnit) and raise an error otherwise.

    So, you can now post:

    SELECT TOP 5 gavo_specconv(em_min, 'GHz') AS nu
    FROM ivoa.obscore
    WHERE gavo_specconv((em_min+em_max)/2, 'GHz')
        BETWEEN 1 AND 2
      AND obs_collection='VLBA LH sources'
    

    to the TAP service at http://dc.g-vo.org/tap. You will get your result in GHz, and you write your constraint in GHz, too. Oh, and see below on the ugly constraint on obs_collection.

    Similarly, an X-ray astronomer would say, perhaps:

    SELECT TOP 5 access_url, gavo_specconv(em_min, 'keV') AS energy
    FROM ivoa.obscore
    WHERE gavo_specconv((em_min+em_max)/2, 'keV')
      BETWEEN 0.5 AND 2
      AND obs_collection='RASS'
    

    This works because the ADQL translator can figure out the unit of its first argument. But, perhaps regrettably, ADQL has no notion of literals with units, and so there is no way to meaningfully say the equivalent of gavo_specconv(656, 'Hz') to get Hα in Hz, and you will receive a (hopefully helpful) error message if you try that.

    However, this functionality is highly desirable not the least because the queries above are fairly inefficient. That's why I added the funny constraints on the collection: without them, the queries will take perhaps half a minute and thus require async operation on my box.

    The (fundamental) reason for that is that postgres is not smart enough to work out it could be using an index on em_min and em_max if it sees something like nu between 3e8/em_min and 3e7/em_max by re-writing the constraint into 3e8/nu between em_min and em_max (and think really hard about whether this is equivalent in the presence of NULLs). To be sure, I will not teach that to my translation layer either. Not using indexes, however, is a recipe for slow queries when the obscore table you query has about 85 million rows (hi there in 2050: yes, that was a sizable table in our day).

    To let users fix what's too hard for postgres (or, for that matter, the translation engine when it cannot figure out units), there is a second form of gavo_specconv that takes a third argument: gavo_specconv(expr, unit_of_expr, target_unit). With that, you can write queries like:

    SELECT TOP 5 gavo_specconv(em_min, 'Angstrom') AS nu
    FROM ivoa.obscore
    WHERE gavo_specconv(5000, 'Angstrom', 'm')
      BETWEEN em_min AND em_max
    

    and hope the planner will use indexes. Full disclosure: Right now, I don't have indexes on the spectral limits of all tables contributing to my obscore table, so this particular query only looks fast because it's easy to find five datasets covering 500 nm – but that's an oversight I'll fix soon.

    Of course, to make this functionality useful in practice, it needs to be available on all obscore services (say) – only then can people run all-VO obscore searches without the optical bias. The next step (before Bambi-eyeing the TAP implementors) therefore would be to get it into the catalogue of ADQL user defined functions.

    For this, one would need to specify a bit more carefully what units must minimally be supported. In DaCHS, I have built this on a full implementation of VOUnits, which means you can query using attoparsecs of wavelength and get your result in dekaerg (which is a microjoule: 1 daerg = 1 uJ in VOUnits – don't you just love this?):

    SELECT gavo_specconv(
      (spectral_start+spectral_end)/2, 'daerg')
      AS energy
    FROM rr.stc_spectral
    WHERE gavo_specconv(0.0002, 'apc', 'J')
      BETWEEN spectral_start AND spectral_end
    

    (stop computing: an attoparsec is about 3 cm). This, incidentally, queries the draft RegTAP extension for the VODataService 1.2 coverage in space, time, and spectrum, which is another reason I'm proposing this function: I'm not quite sure how well my rationale that using Joules of energy is equally inconvenient for all communities will be generally received. The real rationale – that Joule is the SI unit for energy – I don't dare bring forward in the first place.

    Playing with wavelengths in AU (you can do that, too; note, though, that VOUnit forbids prefixes on AU, so don't even try mAU) is perhaps entertaining in a slightly twisted way, but admittedly poses a bit of a challenge in implementation when one does not have full VOUnits available. I'm currently thinking that m, nm, Angstrom, MHz, GHz, keV and MeV (ach! No Joule! But no erg, either!) plus whatever spectral units are in use in the local tables would about cover our use cases. But I'd be curious what other people think.

    Since I found the implementation of this a bit more challenging than I had at first expected, let me say a few words on how the underlying code works; I guess you can stop reading here unless you are planning to implement something like this.

    The fundamental trouble is that spectral conversions are non-linear. That means that what I do for ADQL's IN_UNIT – just compute a conversion factor and then multiply that to whatever expression is in its first argument – will not work. Instead, one has to write a new expression. And building these expressions becomes involved because there are thousands of possible combinations of input and output units.

    What I ended up doing is adopting standard (i.e., SI) units for energy (J), wavelength (m), and frequency (Hz) as common bases, and then first convert the source and target units to the applicable standard unit. This entails trying to convert each input unit to each standard unit until a conversion actually works, which in DaCHS' Python looks like this:

    def toStdUnit(fromUnit):
        for stdUnit in ["J", "Hz", "m"]:
            try:
                 factor = base.computeConversionFactor(
                     fromUnit, stdUnit)
            except base.IncompatibleUnits:
                continue
            return stdUnit, factor
    
        raise common.UfuncError(
            f"specconv: {fromUnit} is not a spectral unit understood here")
    

    The VOUnits code is hidden away in base.computeConversionFactor, which raises an IncompatibleUnits when a conversion is impossible; hence, in the end, as a by-product this function also determines what kind of spectral value (energy, frequency, or wavelength) I am dealing with.

    That accomplished, all I need to do is look up the conversions between the basic units, which can be done in a single dictionary mapping pairs of standard units to the conversion expression templates. I have not tried to make these templates particularly pretty, but if you squint, you can still, I hope, figure out this is actually what the opening image shows:

    SPEC_CONVERSION = {
        ("J", "m"): "h*c/(({expr})*{f})",
        ("J", "Hz"): "({expr})*{f}/h",
        ("J", "J"): "({expr})*{f}",
        ("Hz", "m"): "c/({expr})/{f}",
        ("Hz", "Hz"): "{f}*({expr})",
        ("Hz", "J"): "h*{f}*({expr})",
        ("m", "m"): "{f}*({expr})",
        ("m", "Hz"): "c/({expr})/{f}",
        ("m", "J"): "h*c/({expr})/{f}",}
    

    expr is (conceptually) replaced by the first argument of the UDF, and f is the conversion factor between the input unit and the unit expr is in. Note that thankfully, no additive operators are involved and thus all this is numerically well-conditioned. Hence, I can afford not attempting to simplify any of the expressions involved.

    The rest is essentially book-keeping, where I'm using the ADQL parser to turn the expression into a tree fragment and then fiddling in the tree fragment for expr into that. The result then replaces the UDF function call in the syntax tree. You can review all this in context in DaCHS' ufunctions.py, starting at the definition of toStdUnit.

    Sure: this is no Turing award material. But perhaps these notes are useful when people want to put this kind of thing into their ADQL engines. Which I'd consider a Really Good Thing™.

  • Tangible Astronomy and Movies with TOPCAT

    This March, I've put up two new VO resources (that's jargon for “table or service or whatever”) that, I think, fit quite well what I like to call tangible astronomy: things you can readily relate to what you see when you step out at night. And, since I'm a professing astronomy nerd, that's always nicely gratifying.

    The two resources are the Constellations as Polygons and the Gaia eDR3 catalogue of nearby stars (GCNS).

    Constellations

    On the constellations, you might rightfully say that's really far from science. But then they do help getting an idea where something is, and when and from where you might see something. I've hence wanted for a long time to re-publish the Davenhall Constellation Boundary Data as proper, ADQL-queriable polygons, and figuring out where the loneliest star in the sky (and Voyager 1) were finally made me do it.

    GCNS density around taurus

    Taurus in the GCNS density plot: with constellations!

    So, since early March there's the cstl.geo table on the TAP service at https://dc.g-vo.org/tap with the constallation polygons in its p column. Which, for starters, means it's trivial to overplot constallation boundaries in your favourite VO clients now, as in the plot above. To make it, I've just done a boring SELECT * FROM cstl.geo, did the background (a plain HEALPix density plot of GCNS) and, clicked Layers → Add Area Control and selected the cstl.geo table.

    If you want to identify constellations by clicking, while in the area control, choose “add central” from the Forms menu in the Form tab; that's what I did in the figure above to ensure that what we're looking at here is the Hyades and hence Taurus. Admittedly: these “centres“ are – as in the catalogue – just the means of the vertices rather than the centres of mass of the polygon (which are hard to compute). Oh, and: there is also the AreaLabel in the Forms menu, for when you need the identification more than the table highlighting (be sure to use a center anchor here).

    Note that TOPCAT's polygon plot at this point is not really geared towards large polygons (which the constellations are) right now. At the time of writing, the documentation has: “Areas specified in this way are generally intended for displaying relatively small shapes such as instrument footprints. Larger areas may also be specified, but there may be issues with use.” That you'll see at the edges of the sky plots – but keeping that in mind I'd say this is a fun and potentially very useful feature.

    What's a bit worse: You cannot turn the constellation polygons into MOCs yet, because the MOC library currently running within our database will not touch non-convex polygons. We're working on getting that fixed.

    Nearby Stars

    Similarly tangible in my book is the GCNS: nearby stars I always find romantic.

    Let's look at the 100 nearest stars, and let's add spectral types from Henry Draper (cf. my post on Annie Cannon's catalogue) as well as the constellation name:

    WITH nearest AS (
    SELECT TOP 100
      a.source_id,
      a.ra, a.dec,
      phot_g_mean_mag,
      dist_50,
      spectral
    FROM gcns.main AS a
    LEFT OUTER JOIN hdgaia.main AS b
      ON (b.source_id_dr3=a.source_id)
    ORDER BY dist_50 ASC)
    SELECT nearest.*, name
    FROM nearest
    JOIN cstl.geo AS g
      ON (1=CONTAINS(
        POINT(nearest.ra, nearest.dec),
        p))
    

    Note how I'm using CONTAINS with the polygon in the constellations table here; that's the usage I've had in mind for this table (and it's particularly handy with table uploads).

    That I have a Common Table Expression (“WITH”) here is due to SQL planner confusion (I'll post something about that real soon now): With the WITH, the machine first selects the nearest 100 rows and then does the (relatively costly) spatial match, without it, the machine (somewhat surprisingly) did the geometric match first. This particular confusion looks fixable, but for now I'd ask you for forgiveness for the hack – and the technique is often useful anyway.

    If you inspect the result, you will notice that Proxima Cen is right there, but α Cen is missing; without having properly investigated matters, I'd say it's just too bright for the current Gaia data reduction (and quite possibly even for future Gaia analysis).

    Most of the objects on that list that have made it into the HD (i.e., have a spectral type here) are K dwarfs – which is an interesting conspiracy between the limits of the HD (the late red and old white dwarfs are too weak for it) and the limits of Gaia (the few earlier stars within 6 parsec – which includes such luminaries as Sirius at a bit more than 2.5 pc – are just too bright for where Gaia data reduction is now).

    Animation

    Another fairly tangible thing in the GCNS is the space velcity, given in km/s in the three dimensions U, V, and W. That is, of course, an invitation to look for stellar streams, as, within the relatively small portion of the Milky Way the GCNS looks at, stars on similar orbits will exhibit similar space motions.

    Considering the velocity dispersion within a stellar stream will be a few km/s, let's have the database bin the data. Even though this data is small enough to conveniently handle locally, this kind of remote analysis is half of what TAP is really great at (the other half being the ability to just jump right into a new dataset). You can group by multiple things at the same time:

    SELECT
      COUNT(*) AS n,
      ROUND(uvel_50/5)*5 AS ubin,
      ROUND(vvel_50/5)*5 AS vbin,
      ROUND(wvel_50/5)*5 AS wbin
    FROM gcns.main
    GROUP BY ubin, vbin, wbin
    

    Note that this (truly) 3D histogram only represents a small minority of the GCNS objects – you need radial velocities for space motion, and these are precious even in the Gaia age.

    What really surprised me is how clumpy this distribution is – are we sure we already know all stellar streams in the solar neighbourhood? Watch for yourself (if your browser can't play webm, complain to your vendor):

    [Update (2021-04-01): Mark Taylor points out that the “flashes” you sometimes see when the grid is aligned with the viewing axes (and the general appearance) could be improved by just pulling all non-NULL UVW values out of the table and using a density plot (perhaps shading=density densemap=inferno densefunc=linear). That is quite certainly true, but it would of course defeat the purpose of having on-server aggregation. Which, again, isn't all that critical for this dataset, so doing the prettier plot actually is a valuable exercise for the reader]

    How did I make this video? Well, I started with a Cube Plot in TOPCAT as usual, configuring weighted plotting with n as its weight and played around a bit with scaling out a few outliers. And then I saved the table (to zw.vot), hit “STILTS“ in the plot window and saved the text from there to a text file, zw.sh. I had to change the ``in`` clause in the script to make it look like this:

    #!/bin/sh
    stilts plot2cube \
     xpix=887 ypix=431 \
     xlabel='ubin / km/s' ylabel='vbin / km/s' \
     zlabel='wbin / km/s' \
     xmin=-184.5 xmax=49.5 ymin=-77.6 ymax=57.6 \
     zmin=-119.1 zmax=94.1 phi=-84.27 theta=90.35 \
      psi=-62.21 \
     auxmin=1 auxmax=53.6 \
     auxvisible=true auxlabel=n \
     legend=true \
     layer=Mark \
        in=zw.vot \
        x=ubin y=vbin z=wbin weight=n \
        shading=weighted size=2 color=blue
    

    – and presto, sh zw.sh would produce the plot I just had in TOPCAT. This makes a difference because now I can animate this.

    In his documentation, Mark already has a few hints on how to build animations; here are a few more ideas on how to organise this. For instance, if, as I want here, you want to animate more than one variable, stilts tloop may become a bit unwieldy. Here's how to give the camera angles in python:

    import sys
    from astropy import table
    import numpy
    
    angles = numpy.array(
      [float(a) for a in range(0, 360)])
    table.Table([
        angles,
        40+30*numpy.cos((angles+57)*numpy.pi/180)],
      names=("psi", "theta")).write(
        sys.stdout, format="votable")
    

    – the only thing to watch out for is that the names match the names of the arguments in stilts that you want to animate (and yes, the creation of angles will make numpy afficionados shudder – but I wasn't sure if I might want to have somewhat more complex logic there).

    [Update (2021-04-01): Mark Taylor points out that all that Python could simply be replaced with a straightforward piece of stilts using the new loop table scheme in stilts, where you would simply put:

    animate=:loop:0,360,0.5
    acmd='addcol phi $1'
    acmd='addcol theta 40+30*cosDeg($1+57)'
    

    into the plot2cube command line – and you wouldn't even need the shell pipeline.]

    What's left to do is basically the shell script that TOPCAT wrote for me above. In the script below I'm using a little convenience hack to let me quickly switch between screen output and file output: I'm defining a shell variable OUTPUT, and when I un-comment the second OUTPUT, stilts renders to the screen. The other changes versus what TOPCAT gave me are de-dented (and I've deleted the theta and psi parameters from the command line, as I'm now filling them from the little python script):

    OUTPUT="omode=out out=pre-movie.png"
    #OUTPUT=omode=swing
    
    python3 camera.py |\
    stilts plot2cube \
       xpix=500 ypix=500 \
       xlabel='ubin / km/s' ylabel='vbin / km/s' \
       zlabel='wbin / km/s' \
       xmin=-184.5 xmax=49.5 ymin=-77.6 ymax=57.6 \
       zmin=-119.1 zmax=94.1 \
       auxmin=1 auxmax=53.6 \
    phi=8 \
    animate=- \
    afmt=votable \
    $OUTPUT \
       layer=Mark \
          in=zw.vot \
          x=ubin y=vbin z=wbin weight=n \
          shading=weighted size=4 color=blue
    
    # render to movie with something like
    # ffmpeg -i "pre-movie-%03d.png" -framerate 15 -pix_fmt yuv420p /stream-movie.webm
    # (the yuv420p incantation is so real-world
    # web browsers properly will not go psychedelic
    # with the colours)
    

    The comment at the end says how to make a proper movie out of the PNGs this produces, using ffmpeg (packaged with every self-respecting distribution these days) and yielding a webm. Yes, going for mpeg x264 might be a lot faster for you as it's a lot more likely to have hardware support, but everything around mpeg is so patent-infested that for the sake of your first-born's soul you probably should steer clear of it.

    Movies are fun in webm, too.

  • Semantics, Cross-Discipline Discovery, and Down-To-Earth Code

    Boxes-and-arrows view of the UAT

    A tiny piece of the Unified Astronomy Thesaurus as viewed by Sembarebro – the IVOA logos sit on terms that have VO resoures on them.

    Sometimes people ask me (in particular when I'm wearing my hat as the current chair of the IVOA Semantics working group) “well, what's this semantics thing good for?“ There are many answers, but here's one that nicely meshes with my pet subject data discovery: You want hierarchical, agreed-upon word lists to bridge discipline gaps.

    This story starts with B2FIND, a cross-disciplinary metadata aggregator for science data run within the framework of the European Open Science Cloud (EOSC). GAVO (or, more precisely, Heidelberg University's Astronomy) is involved in the EOSC via the ESCAPE project, and so I have had the pleasure of interacting with B2FIND for a while now. In particular, they are harvesting the metadata records of the Virtual Observatory Registry from us.

    This of course requires a bit of mapping, because the VO's metadata formats (VOResource, VODataService, and several extensions; see 2014A&C.....7..101D to learn more) are far too fine-grained for the wider scientific public. Not even our good friends from high-energy physics would appreciate being served links to, say, TAP endpoints (yet!). So, on our end we're mapping to the Datacite metadata kernel, which from VOResource is just a piece of XSL away (plus some perhaps debatable conventions).

    But there's more to this mapping, such as vocabularies of subject keywords. You might argue that in the age of rapid full text searches, keywords are dead. I would beg to disagree. For example, with good, hierarchical keyword systems you can, among many other useful things, offer topical browsing of metadata repositories. While it might not quite qualify as “useful” yet, the SemBaReBro registry browser I've hacked together late last year would be an example for such facilities – and might become part of our WIRR Registry searching tool one day.

    On the topic of subject keywords VOResource says that resources in the VO should be using the Unified Astronomy Thesaurus, specifically in its IVOA incarnation (not quite true yet, but true enough by blog standards). While few do, I've done a mapping of existing keywords in the VO to UAT concepts, which is what's behind SemBaReBro. So: most VO resources now have UAT concepts.

    However, these include concepts like AM Canum Venaticorum Stars, which outside of rather specialised circles of astronomers few people will ever have heard about (which, don't get me wrong, I personally regret – they're funky star systems). Hence, B2FIND does not bother with those.

    When we discussed the subject mapping for B2FIND, we thought using the UAT's top-level concepts might be a good start. However, at that point no VO resources at all actually used these, and, indeed, within astronomy that generally wouldn't make a lot of sense, because they are to unspecific to help much within the discipline. I postponed and then forgot about the problem – when the keywords of the resources weren't even from UAT, solving the granularity mismatch just wasn't humanly possible.

    That was the state of affairs until last Tuesday, when I had a mumble session with B2FIND folks and the topic came up again. And now, thanks partly to the new desise format proposed in the current Vocabularies in the VO 2 draft, things fell nicely into place: Hey, I have UAT concepts, and mapping these to the top-level terms isn't hard either any more.

    So, B2FIND gets the toplevel keywords they've been expecting all the time starting today. Yes: This isn't a panacea suddenly solving all the problems of cross-discipline data discovery, not the least because it's harder than one might think to imagine how such a thing would look like in practice. But given the complexities involved I was positively surprised how easy this particular part of the equation was.

    From here on, there's a bit of tech babble I intend to re-use in the RFC of Vocabularies in the VO 2; don't feel bad if you skip it.

    The first step was to make the mapping from UAT terms to the toplevel terms. The interesting part of the source I'm linking to here is:

    def get_roots_for(term, uat_terms):
      roots, seen = set(), set()
    
      def follow(t):
        wider = uat_terms[t]["wider"]
        if not wider:
          if not t in ROOT_TERMS:
            raise Exception(
              f"{t} found as a top-level term")
          roots.add(t)
        else:
          seen.add(t)
          for wider in uat_terms[t]["wider"]:
            follow(wider)
    
      follow(term)
      return roots
    

    There, uat_terms is essentially just a json-decode of what you get from the vocabulary URI if you ask for desise (see the draft spec linked to above for the technicalities). That's really it, and it even defends against cycles in the concept graph (which are legal by SKOS but shouldn't happen in the UAT) and detached terms (i.e., ones that are not rooted in the top-level terms). For what it does, I claim that's remarkably compact code.

    Once I had that, I needed to get the UAT-mapped subject keywords for the records I'm serving to datacite and fiddle the corresponding roots back in. That's technically a bit more involved because I am producing the datacite records on the fly from the XML representation for VOResource records that I keep in the database, and there's a bit of namespace magic involved (full code). Plus, the UAT-mapped keywords are only kept in the database, not in the metadata records.

    Still, the core operation here is relatively straightforward. Consider:

    def addUATToplevels(dataciteTree):
      # dataciteTree is an (lxml) ElementTree for the
      # result of the XSL transformation.  That's all
      # I have, and thus I first have to fiddle out
      # the identifier we are talking about
      ivoid =  dataciteTree.xpath(
          "//d:alternateIdentifier["
          "@alternateIdentifierType='ivoid']",
          namespaces={"d": DATACITE_NS}
        )[0].text.lower()
      # The .lower() is necessary because ivoids
      # unfortunately are case-insensitive, and RegTAP
      # normalises them to lowercase to retain sanity.
    
      # Now pull the UAT-mapped subject keywords from
      # our RegTAP extension (getTableConn is
      # DaCHS-internal API, but there's no magic in
      # there, it's just connection pooling with
      # guarantees against connections  idle in
      # transaction).
      with base.getTableConn() as conn:
        subjects = set(r[0] for r in
          conn.query("SELECT uat_concept"
            " FROM rr.subject_uat"
            " WHERE ivoid=%(ivoid)s", locals()))
    
      # This is the mapping itself: we do
      # roots-subjects to avoid adding
      # root terms that are already in
      # the record itself.  UAT_TOPLEVELS is the result
      # of the root finding discussed above.
      for term in subjects:
        root = UAT_TOPLEVELS[term]
        newRoots |= (root-subjects)
    
      # And finally fiddle in any new root terms found
      # into the datacite tree
      if newRoots:
        subjects = dataciteTree.xpath(
          "//d:subjects",
          namespaces={"d": DATACITE_NS})[0]
        for root in newRoots:
          newSubject = etree.SubElement(subjects,
            f"{{{DATACITE_NS}}}subject")
          newSubject.text = root
    

    Apart from the technicalities I'd again say that's pretty satisfying code.

    And these two pieces of code are really all I had to do to map between the vocabularies of different granularities – which I claim will probably be the norm as metadata flows between disciplines.

    It's great to see the pieces of a fairly comples puzzle fall into place like that.

  • The Loneliest Star in the Sky

    sky images and a distribution plot

    The loneliest star in the sky on the left, and on the right a somewhat more lonelier one (it's explained in the text). The inset shows the distribution of the 500 loneliest stars on the whole sky in Galactic coordinates.

    In early December, the object catalogue of Gaia's data release 3 was published (“eDR3“), and I've been busy in various ways on this data off and on since then – see, for instance, the The Case of the disappearing bits on this blog.

    One of the things I have missed when advising people on projects with previous Gaia data releases is a table that, for every object, gives the nearest neighbour. And so for this release I've created it and christened it, perhaps just a bit over-grandiosely, “Gaia eDR3 Autocorrelation”. Technically, it is just a long (1811709771 rows, to be precise) list of pairs of Gaia eDR3 source ids, the ids of their nearest neighbour, and a spherical distance between.

    This kind of data is useful for many applications, mostly when looking for objects that are close together or (more often) things that fail for such close pairs for a wide variety of reasons. I have taken some pains to not only have close neighbours, though, because sometimes you may want specifically objects far away from others.

    As in the case of this article's featured image: The loneliest star in the sky (as seen by Gaia, that is) is eDR3 6049144983226879232, which is 4.3 arcminutes from its neighbour, 6049144021153793024, which in turn is the second-loneliest star in the sky. They are, perhaps a bit surprisingly, in Ophiuchus (and thus fairly close to the Milky Way plane), and (probably) only about 150 parsec from Earth. Doesn't sound too lonely, hm? Turns out: these stars are lonely because dust clouds blot out all their neighbours.

    Rank three is in another dust cloud, this time in Taurus, and so it continues in low Galactic latitude to rank 8 (4402975278134691456) at Galactic latitude 36.79 degrees; visualising the thing, it turns out it's again in a dark cloud. What about rank 23 at 83.92 Galactic (3954600105683842048)? That's probably bona-fide, or at least it doesn't look very dusty in the either DSS or PanSTARRS. Coryn (see below) estimates it's about 1100 parsec away. More than 1 kpc above the galactic disk: that's more what I had expected for lonely stars.

    Looking at the whole distribution of the 500 loneliest stars (inset above), things return a bit more to what I had expected: Most of them are around the galactic poles, where the stellar density is low.

    So: How did I find these objects? Here's the ADQL query I've used:

    SELECT TOP 500
      ra, dec, source_id, phot_g_mean_mag, ruwe,
      r_med_photogeo,
      partner_id, dist,
      COORD2(gavo_transform('ICRS', 'GALACTIC',
        point(ra, dec))) AS glat
    FROM
      gedr3dist.litewithdist
      NATURAL JOIN gedr3auto.main
    ORDER BY dist DESC
    

    – run this on the TAP server at http://dc.g-vo.org/tap (don't be shy, it's a cheap query).

    Most of this should be familiar to you if you've worked through the first pages of ADQL course. There's two ADQL things I'd like to advertise while I have your attention:

    1. NATURAL JOIN is like a JOIN USING, except that the database auto-selects what column(s) to join on by matching the columns that have the same name. This is a convenient way to join tables designed to be joined (as they are here). And it probably won't work at all if the tables haven't been designed for that.
    2. The messy stuff with GALACTIC in it. Coordinate transformations had a bad start in ADQL; the original designers hoped they could hide much of this; and it's rarely a good idea in science tools to hide complexity essentially everyone has to deal with. To get back on track in this field, DaCHS servers since about version 1.4 have been offering a user defined function gavo_transfrom that can transform (within reason) between a number of popular reference frames. You will find more on it in the server's capabilities (in TOPCAT: the “service” tab). What is happening in the query is: I'm making a Point out of the RA and Dec given in the catalogue, tell the transform function it's in ICRS and ask it to make Galactic coordinates from it, and then take the second element of the result: the latitude.

    And what about the gedr3dist.litewithdist table? That doesn't look a lot like the gaiaedr3.gaiasource we're supposed to query for eDR3?

    Well, as for DR2, I'm again only carrying a “lite” version of the Gaia catalogue in GAVO's Heidelberg data center, stripped down to the columns you absolutely cannot live without even for the most gung-ho science; it's called gaia.edr3lite.

    But then my impression is that almost everyone wants distances and then hacks something to make Gaia's parallax work for them. That's a bad idea as the SNR goes down to levels very common in the Gaia result catalogue (see 2020arXiv201205220B if you don't take my word for it). Hence, I'm offering a pre-joined view (a virtual table, if you will) with the carefully estimated distances from Coryn Bailer-Jones, and that's this gedr3dist.litewithdist. Whenever you're doing something with eDR3 and distances, this is where I'd point you first.

    Oh, and I should be mentioning that, of course, I figured out what is in dust clouds and what is not with TOPCAT and Aladin as in our tutorial TOPCAT and Aladin working together (which needs a bit of an update, but you'll figure it out).

    There's a lot more fun to be had with this (depending on what you find fun in). What about finding the 10 arcsec-pairs with the least different luminosities (which might actually be useful for testing some optics)? Try this:

    SELECT TOP 300
      a.source_id, partner_id, dist,
      a.phot_g_mean_mag AS source_mag,
      b.phot_g_mean_mag AS partner_mag,
      abs(a.phot_g_mean_mag-b.phot_g_mean_mag) AS magdiff
    FROM gedr3auto.main
      NATURAL JOIN gaia.edr3lite AS a
      JOIN gaia.edr3lite AS b
        ON (partner_id=b.source_id)
    WHERE
      dist BETWEEN 9.999/3600 AND 10.001/3600
      AND a.phot_g_mean_mag IS NOT NULL
      AND b.phot_g_mean_mag IS NOT NULL
    ORDER BY magdiff ASC
    

    – this one takes a bit longer, as there's many 10 arcsec-pairs in eDR3; the query above looks at 84690 of them. Of course, this only returns really faint pairs, and given the errors stars that weak have they're probably not all that equal-luminosity as that. But fixing all that is left as an exercise to the reader. Given there's the RP and BP magnitude columns, what about looking for the most colourful pair with a given separation?

    Acknowledgement: I couldn't have coolly mumbled about Ophiuchus or Taurus without the SCS service ivo://cds.vizier/vi/42 (”Identification of a Constellation From Position, Roman 1982”).

    Update [2021-02-05]: I discovered an extra twist to this story: Voyager 1 is currently flying towards Ophiuchus (or so Wikipedia claims). With an industrial size package of artistic licence you could say: It's coming to keep the loneliest star company. But of course: by the time Voyager will be 150 pc from earth, eDR3 6049144983226879232 will quite certainly have left Ophiuchus (and Voyager will be in a completely different part of our sky, that wouldn't look familar to us at all) – so, I'm afraid apart from a nice conincidence in this very moment (galactically speaking), this whole thing won't be Hollywood material.

  • DaCHS 2.3 on the way to Debian main

    DaCHS, Debian, and 2.3

    DaCHS 2.3 will be the first DaCHS officially in Debian.

    DaCHS releases usually come around the Interops in (roughly) May and November. Not this one, though, for one pleasant, one unpleasant, and several other reasons.

    The unpleasant reason first: The 2.2 release has a fairly severe memory leak in it (resulting, in roundabout ways, from python 3 preserving tracebacks of nested exceptions), which of course really became virulent on my server right over the holidays. If you run a site with just a few gigs of RAM that might be hit by second-rate async clients, this will bite you and you ought to upgrade now (well, you ought to upgrade anyway).

    The pleasant reason is that DaCHS has made it into Debian main and thus, unless something disastrous happens, it will be part of the Debian version 11 (“bullseye”). This means that people who do not need to be on the bleeding edge, will not need to monkey around with our repository (and its signing key) any more starting some time in 2021 (or just about now, if they're running testing). I can't tell you how gratifying that feels to me. And well, I wanted relatively recent code corresponding to a something on our release branch in bullseye.

    One of the other reasons is that stilts' author Mark Taylor is trying to stomp out TAP services failing his taplint's validation, and many DaCHS 2.2 services (those that don't define TAP examples, which of course is a shame anyway) fail with only the (really minor) error E-EXDH-1 (see below).

    DaCHS 2.3 has some other noteworthy changes; as usual in minor version steps, my expectation is that none of this will break existing services. Still, you may want to glance over the following list, as there are some behavioural changes nevertheless. In approximate order of the wizardry involved:

    • I've long had a bad consciousness because DaCHS has stored cleartext passwords so far. That's probably not a problem for DaCHS itself (as it does not protect great riches), but people tend to re-use passwords, and I'd have hated to leak passwords that might work elsewhere. Well, no longer: the dc.users table now contains hashed passwords, and the upgrade will hash them. This, in particular, means that you cannot recover them once you have updated (which, of course, is as it should be).

    • The javascript delivered with DaCHS was no longer quite up to date with Debian's jquery. I have updated it in several ways, and I have restored the functionality of the WebSAMP button in the default response. If you have custom HTML templates containing javascript, you may need to update them to newer jquery, too, specifically,

      • change .unload( to .on("unload", (this happens in the SAMP code in defaultresponse.html, for instance).
      • also in the SAMP code in overridden defaultresponses, change the icon URL to completeURL("/logo_tiny.png") (or whatever) to avoid trouble with https installations.
      • if you compare jquery element names: these are now returned in lower case.

      And yes, WebSAMP now mostly works with HTTPS (which is unrelated to this update, except that DaCHS until 2.2 suppresses the WebSAMP button when it thinks it is delivering through HTTPS).

    • DaCHS now honours upgrade-insecure-requests headers that common web browsers issue and will then redirect them to https when appropriate. So, please don't forcibly do these redirects any more from reverse proxies – they break, among other things, TAP, and they're generally just a bad idea.

    • DaCHS now instructs the database to return all bits of floating point numbers. This may break your regression tests, but it's the right thing to do (blog post on this).

    • Another thing that may break regression tests: TAP results now have column names in the case given in the RD (where previously they were lowercased unless quoted). Let me cite rule 1 of SQL table design: Don't use mixed-case column names.

    • Wildcards in the directory parts of sources patterns are now expanded, which means that you can write things like <sources pattern="data/202?/*.fits"/>, which previously wouldn't have done what you might reasonably expect; however, this might in rare cases match additional sources when you re-import data.

    • The examples endpoint now returns a 404 if no examples are defined on a service; this fixes the stilts taplint E-EXA-EXDH-1 error I mentioned above.

    • DaCHS will now refuse to use x-unregistred as an authority when publishing resources or creating publisher DIDs. This is to protect to people who do a lot of imports before settling on their authority; sometimes DaCHS' fallback null authority got into their databases, which then caused quite a bit of cleanup effort.

    • Because of licensing problems, the Debian package no longer contains the CC logos for the time being. If you want them back, drop appropriate files cc0.png, ccby.png, and ccybysa.png into /var/gavo/web/nv_static/img

    • You can now list modules you want in a procedure application in its setup/@imports attribute. I've done this after I had to add code to a proc's setup just to run an import once too often.

    • simbadinterface's Sesame now uses the dc.metastore table to cache results rather than files as before. Previous saveNew, id, and debug parameters are no longer supported (the base.caches.getSesame interface is unchanged, so it's unlikely you'd notice this).

    • table.query() or querier.query() are now seriously deprecated (you may have used them in code embedded in RDs). See Database Queries in the reference documentation for what the recommended query patterns are (and have been for a while). Just one word of warning: table.query would macro-expand its argument, which the connection method obviously cannot. If you depend on that, call table.expand(query) manually first.

    With this: Merry upgrading and a happy new year!

« Page 9 / 20 »